SkyCiv Documentation

Your guide to SkyCiv software - tutorials, how-to guides and technical articles

SkyCiv Section Builder

  1. Home
  2. SkyCiv Section Builder
  3. Analysis
  4. Calculation Verification

Calculation Verification

Example 1

Determine the stresses of a T-section subjected to combined forces.

Dimensions of section Geometric Properties Forces
section builder analysis verification T-section
  • Area = 3579 mm2

Moment of Inertia

  • Iz = 1.05786·107 mm4
  • Iy = 6.32306·106 mm4

Distans to Max and Min

  • ymax = 39.3877 mm
  • ymin = -150.6123 mm
  • zmax = 90 mm
  • zmin = -90 mm

Shear Properties

  • Qz = 7.93943·104 mm3
  • Qy = 5.25658·104 mm3

Torsion

  • J = 1.46870·105 mm4
  • rmax = 13.5357 mm
  • Axial = 10.0 kN
  • Shear Y = 1.0 kN
  • Shear Z = 1.0 kN
  • Torsion = 0.1 kN·m
  • Bending Y = 1 .0 kN·m
  • Bending Z = 1 .0 kN·m

 

Comparison of Results

Result Location SkyCiv SB Analysis Manual Third-Party
Primary Stresses (MPa)
Axial max 2.794 \(\frac{Area}{Axial}=\frac{10·1000}{3579} = 2.794\)

(0.00%)

2.794

(0.00%)

min 2.794 \(\frac{Area}{Axial}=\frac{10·1000}{3579} = 2.794\)

(0.00%)

2.794

(0.00%)

Bending Y max 14.234 \(\frac{Bending Y}{I_y/y_{max}}=\frac{1·1000000}{6.32306·10^6/90} =14.234\)

(0.00%)

14.234

(0.00%)

min -14.234 \(\frac{Bending Y}{I_y/y_{min}}=\frac{1·1000000}{6.32306·10^6/-90} =-14.234\)

(0.00%)

-14.234

(0.00%)

Bending Z max 3.723 \(\frac{Bending Z}{I_z/z_{max}}=\frac{1·1000000}{1.05786·10^7/39.3877} =3.723\)

(0.00%)

3.723

(0.00%)

min -14.237 \(\frac{Bending Z}{I_z/z_{min}}=\frac{1·1000000}{1.05786·10^7/-150.6123} =-14.237\)

(0.00%)

-14.237

(0.00%)

Resultant Shear Y max 1.123 \(\frac{Shear Y·Q_z}{I_z·t}=\frac{1·1000·7.93943·10^4}{1.05786·10^7·7} = 1.072\)

(4.54%)

1.120

(0.26%)

Resultant Shear Z max 0.698 \(\frac{Shear Z·Q_y}{I_y·t}=\frac{1·1000·5.25658·10^4}{6.32306·10^6·13} = 0.639\)

(8.45%)

0.709

(1.57%)

Torsion max 9.956 \(\frac{r_{max}}{J}=\frac{0.1·1000000·13.5357}{1.46870·10^5} = 9.216\)

(7.43%)

9.570

(3.87%)

Example 2

Determine the stresses of a section subjected to combined forces.

Dimensions of section Geometric Properties Forces
section builder analysis verification aluminium section
  • Area = 533.9368 mm2

Moment of Inertia

  • Iz = 3.84955·105 mm4
  • Iy = 9.59303·104 mm4
  • α = -0.1562°
  • Izp = 3.84957·105 mm4
  • Iyp = 9.59281·104 mm4

Distans to Max and Min

  • Pointmax = (-15.7027, 37.2424) mm
  • Pointmin =(14.1016, -42.0526) mm
  • Bending Y Pointmax = (16.0015, -40.1425) mm
  • Bending Y Pointmin = (-15.9392, 30.7351) mm

Shear Properties

Shear Y

  • Qz = 6533.7159 mm3
  • Qy = 4.2994 mm3
  • t=3.9624 mm

Shear Z

  • Qz = 929.3201 mm3
  • Qy = 3337.6401 mm3
  • t= 2.8145 mm

Torsion

  • J = 1513.8 mm4
  • rmax = 4.6293 mm
  • Axial = 10.0 kN
  • Shear Y = 1.0 kN
  • Shear Z = 1.0 kN
  • Torsion = 0.01 kN·m
  • Bending Y = 1 .0 kN·m
  • Bending Z = 1 .0 kN·m

Comparison of Results

Result Location SkyCiv SB Analysis Manual Third-Party
Primary Stresses (MPa)
Axial max 18.729 \(\frac{Area}{Axial}=\frac{10·1000}{533.9368} = 18.729\)

(0.00%)

18.73

(0.00%)

min 18.729 \(\frac{Area}{Axial}=\frac{10·1000}{533.9368} = 18.729\)

(0.00%)

18.793

(0.00%)

Bending Y max 166.538 \(\frac{M_y·\cos(\alpha)}{\frac{I_y}{z_{max}}}+\frac{M_y·\sin(\alpha)}{\frac{I_z}{y_{max}}}=\frac{1000000·\cos(-0.1562^\circ)}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562^\circ)}{\frac{9.59281·10^4}{14.1016}}=166.694\)

(0.00%)

166.5

(0.00%)

min -165.951 \(\frac{M_y·\cos(\alpha)}{\frac{I_y}{z_{min}}}+\frac{M_y·\sin(\alpha)}{\frac{I_z}{y_{min}}}=\frac{1000000·\cos(-0.1562^\circ)}{\frac{3.84955·10^5}{30.7351}}+\frac{1000000·\sin(-0.1562^\circ)}{\frac{9.59281·10^4}{-15.9392}}=166.045\)

(0.00%)

-166.0

(0.00%)

Bending Z max 97.189 \(\frac{M_z·\cos(\alpha)}{\frac{I_z}{y_{max}}}+\frac{M_z·\sin(\alpha)}{\frac{I_y}{z_{max}}}=\frac{1000000·\cos(-0.1562^\circ)}{\frac{3.84955·10^5}{37.2424}}+\frac{1000000·\sin(-0.1562^\circ)}{\frac{9.59281·10^4}{-15.7027}}=97.19\)

(0.00%)

97.19

(0.00%)

min -109.639 \(\frac{M_z·\cos(\alpha)}{\frac{I_z}{y_{min}}}+\frac{M_z·\sin(\alpha)}{\frac{I_y}{z_{min}}}=\frac{1000000·\cos(-0.1562^\circ)}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562^\circ)}{\frac{9.59281·10^4}{14.1016}}=-109.64\)

(0.00%)

-109.6

(0.00%)

Resultant Shear Y max 4.302 \(\frac{ShearY·\cos(\alpha)·Qz}{Izp·t}+\frac{ShearZ·\cos(\alpha)·Qy}{Iyp·t}=\frac{1000·\cos(-0.1562^\circ)·6533.7159}{{3.84955·10^5·3.9624}}+\frac{1000·\sin(-0.1562^\circ)·4.2994}{9.59281·10^4·3.9624}=4.283\)

(0.44%)

4.297

(0.12%)

Resultant Shear Z max 16.629 \(\frac{ShearZ·\sin(\alpha)·Qz}{Izp·t}+\frac{ShearZ·\cos(\alpha)·Qy}{Iyp·t}=\frac{1000·\sin(-0.1562^\circ)·929.3201}{{3.84955·10^5·2.8145}}+\frac{1000·\cos(-0.1562^\circ)·3337.6406}{9.59281·10^4·2.8145}=12.36\)

(25.67%)

17.37

(4.46%)

Torsion max 30.418 \(\frac{r_{max}}{J}=\frac{0.1·1000000·4.6293}{1513.65} = 30.584\)

(0.55%)

31.98

(5.14%)

Was this article helpful to you?
Yes No

How can we help?

Go to Top