Esempio 1
Determinare le sollecitazioni di una sezione a T sottoposta a forze combinate.
Confronto dei risultati
| Risultato | Posizione | Analisi SB SkyCiv | Manuale | Terzo | 
| Sollecitazioni primarie (MPa) | ||||
| Assiale | max | 2.794 | \(\frac{l'Area}{Assiale}=  Frac{10·1000}{3579} = 2.794\) (0.00%) | 2.794 (0.00%) | 
| min | 2.794 | \(\frac{l'Area}{Assiale}=  Frac{10·1000}{3579} = 2.794\) (0.00%) | 2.794 (0.00%) | |
| Piegare Y | max | 14.234 | \(\frac{Piegare Y}{io_a/a_{max}}=  Frac{1·1000000}{6.32306·10^6/90} =14.234) (0.00%) | 14.234 (0.00%) | 
| min | -14.234 | \(\frac{Piegare Y}{io_a/a_{min}}=  Frac{1·1000000}{6.32306·10^6/-90} =-14.234\) (0.00%) | -14.234 (0.00%) | |
| Piegare Z | max | 3.723 | \(\frac{Piegare Z}{I_z/z_{max}}=  Frac{1·1000000}{1.05786·10^7/39.3877} =3.723\) (0.00%) | 3.723 (0.00%) | 
| min | -14.237 | \(\frac{Piegare Z}{I_z/z_{min}}=  Frac{1·1000000}{1.05786·10^7/-150.6123} =-14.237\) (0.00%) | -14.237 (0.00%) | |
| Taglio risultante Y | max | 1.123 | \(\frac{Taglio Y·Q_z}{I_z·t}=  Frac{1·1000·7.93943·10^4}{1.05786·10^7·7} = 1.072\) (4.54%) | 1.120 (0.26%) | 
| Cesoia risultante Z | max | 0.698 | \(\frac{Taglio Z·Q_y}{Io_y·t}=  Frac{1·1000·5.25658·10^4}{6.32306·10^6·13} = 0.639\) (8.45%) | 0.709 (1.57%) | 
| Torsione | max | 9.956 | \(\frac{r_{max}}{J}=  Frac{0.1·1000000·13.5357}{1.46870·10^5} = 9.216\) (7.43%) | 9.570 (3.87%) | 
Esempio 2
Determinare le sollecitazioni di una sezione soggetta a forze combinate.
Confronto dei risultati
| Risultato | Posizione | Analisi SB SkyCiv | Manuale | Terzo | 
| Sollecitazioni primarie (MPa) | ||||
| Assiale | max | 18.729 | \(\frac{l'Area}{Assiale}=  Frac{10·1000}{533.9368} = 18.729\) (0.00%) | 18.73 (0.00%) | 
| min | 18.729 | \(\frac{l'Area}{Assiale}=  Frac{10·1000}{533.9368} = 18.729\) (0.00%) | 18.793 (0.00%) | |
| Piegare Y | max | 166.538 | \(\frac{M_y·\cos(\alfa)}{\frac{io_y}{z_{max}}}+\frac{M_y·\sin(\alfa)}{\frac{I_z}{y_{max}}}=  Frac{1000000·\cos(-0.1562[object Window])}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562[object Window])}{\frac{9.59281·10^4}{14.1016}}=166.694\) (0.00%) | 166.5 (0.00%) | 
| min | -165.951 | \(\frac{M_y·\cos(\alfa)}{\frac{io_y}{z_{min}}}+\frac{M_y·\sin(\alfa)}{\frac{I_z}{y_{min}}}=  Frac{1000000·\cos(-0.1562[object Window])}{\frac{3.84955·10^5}{30.7351}}+\frac{1000000·\sin(-0.1562[object Window])}{\frac{9.59281·10^4}{-15.9392}}=166.045\) (0.00%) | -166.0 (0.00%) | |
| Piegare Z | max | 97.189 | \(\frac{M_z·\cos(\alfa)}{\frac{I_z}{y_{max}}}+\frac{M_z·\sin(\alfa)}{\frac{io_y}{z_{max}}}=  Frac{1000000·\cos(-0.1562[object Window])}{\frac{3.84955·10^5}{37.2424}}+\frac{1000000·\sin(-0.1562[object Window])}{\frac{9.59281·10^4}{-15.7027}}=97.19\) (0.00%) | 97.19 (0.00%) | 
| min | -109.639 | \(\frac{M_z·\cos(\alfa)}{\frac{I_z}{y_{min}}}+\frac{M_z·\sin(\alfa)}{\frac{io_y}{z_{min}}}=  Frac{1000000·\cos(-0.1562[object Window])}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562[object Window])}{\frac{9.59281·10^4}{14.1016}}=-109.64\) (0.00%) | -109.6 (0.00%) | |
| Taglio risultante Y | max | 4.302 | \(\frac{ShearY·\cos(\alfa)Qz}{Izp·t}+\frac{ShearZ·\cos(\alfa)·Qa}{Iip·t}=  Frac{1000·\cos(-0.1562[object Window])·6533.7159}{{3.84955·10^5·3.9624}}+\frac{1000·\sin(-0.1562[object Window])·4.2994}{9.59281·10^4·3.9624}=4.283\) (0.44%) | 4.297 (0.12%) | 
| Cesoia risultante Z | max | 16.629 | \(\frac{ShearZ·\sin(\alfa)Qz}{Izp·t}+\frac{ShearZ·\cos(\alfa)·Qa}{Iip·t}=  Frac{1000·\sin(-0.1562[object Window])·929.3201}{{3.84955·10^5·2.8145}}+\frac{1000·\cos(-0.1562[object Window])·3337.6406}{9.59281·10^4·2.8145}=12.36\) (25.67%) | 17.37 (4.46%) | 
| Torsione | max | 30.418 | \(\frac{r_{max}}{J}=  Frac{0.1·1000000·4.6293}{1513.65} = 30.584\) (0.55%) | 31.98 (5.14%) | 
 
											
				



