 Documentazione SkyCiv

La tua guida al software SkyCiv - tutorial, guide pratiche e articoli tecnici

1. Casa
2. Note tecniche
3. 3D strutturale
4. Analisi dello spettro di risposta: Piatti

# Analisi dello spettro di risposta: Piatti

## Descrizione generale

SkyCiv has included a new powerful feature consisting of the plate response spectrum analysis in the platform. In questo articolo, we will cover an example of a small building, as the following image shows. The primary purpose is to explain some essential details when executing a similar analysis by yourself. figura 1. Esempio di piccola costruzione

You can see that the small reinforced concrete structure has walls and slabs built using the SkyCiv plate element. When designing the building for dynamic loads such as earthquakes, most construction codes establish some methods such as the ‘Response Spectrum Procedure or Analysis (RSA).’

The RSA consists of taking the seismic design level acceleration through a smooth curve given by the code. You can read these SkyCiv articles: Analisi dello spettro di risposta: A Building Example and Response Spectrum Analysis: Modal Combination Methods for more information and examples Analisi dello spettro di risposta: Building Examples e Analisi dello spettro di risposta: Metodi di combinazione modale.

Se sei nuovo in SkyCiv, Iscriviti e testa tu stesso il software!

## Finite Element Model: Plates Dynamic Analysis

Once the geometry and materials for the example have been defined, the next crucial step is to run a linear analysis of a meshed structure. Please take a look at the model in Figure 2. figura 2. Piccolo edificio a maglie

The motion equation to solve when running a response spectrum analysis has the shape of:

$${M_e}{\punto{X_e}}+{C_e}{\punto{X_e}}+{K_e}{X_e}={-\punto{X_0}{(t)}{M_e}{J}}$$

Dove:

• $${M_e}$$ is the consistent matrix for masses.
• $${C_e}$$ is the damping matrix (Spesso, this value could be calculated as the linear combination of stiffness and masses matrices $${C_e}={\alfa}{K_e}+{\beta}{M}$$ ).
• $${K_e}$$ è la matrice di rigidità.
• $${X_e}$$ is the displacement vector relative to the structure’s base.
• $${X_0}{(t)}$$ is the soil displacement vector (It has all degrees of freedom: 3 displacements and three rotations).
• $${J}$$ is a vector with unitary components.

Due SkyCiv using the Finite Element Method for Plates, the matrix $${M_e}$$ could be obtained through the following expression for Kinetic Energy:

$${E_c}={\frac{1}{2}}{\int_{vol} {\rho}{\punto{X}^ 2}{dw}Vol}$$ .

We now write the $$x$$ displacement as a function of its nodes and use some interpolation expressions ($$N_{X}^{T}$$).

$${X}=N_{X}^{T} {X}$$. If we plug this value into the energy equation, noi abbiamo:

$${E_c}={\frac{1}{2}}{\punto{X}^{T}}\{{\int_{vol}{\rho}{N}{N^T}{d}{Vol}}\} \punto{X}$$

Così, we can say that:

$$M = {\int_{vol}{\rho}{N}{N^T}{d}{Vol}}$$

Defining the above matrix lets us run a modal analysis, which is required for the dynamic analysis. figura 3 helps us with some recommended inputs. figura 3. Modalità massime considerate aumentate fino a 40

Increasing the total number of modes is recommended until strictly fulfilling codes. This will affect the total mass participation factors, which have to reach a value of 90%.

## Carichi spettrali

The next step is to define the spectral loads. We can include a custom function or take the cases previously built by the SkyCiv platform. This example uses for each building plan main direction an ASCE plot. Check the inputs in Figure 4 e figura 5. figura 4. Impostazioni per RSA, part one figura 5. Impostazioni per RSA, part two

Se sei nuovo in SkyCiv, Iscriviti e testa tu stesso il software!

## Results analysis and conclusions figura 6. Modes and Mass Participation Summary, part one figura 7. Modes and Mass Participation Summary, part one

Figure 6 e 7 give the modes and mass participation values. These tables define the principal modes in each plan direction corresponding to those with the highest mass participation values.

Modalità 24, T = 0.029 secondi, partecipazione di massa = 44.80 % ‘x direction’: figura 8. Main modal mode for X direction.

Modalità 23, T = 0.030 secondi, partecipazione di massa = 41.80 % ‘z direction’: figura 9. Main modal mode for Z direction.

SkyCiv also gives the displacements, forze, sottolinea, and so on when running the RSA. The following images help us to understand how the buildings behave. figura 10. Displacements in X direction for RSA load case. figura 11. Displacement in the Z direction for RSA load case.

You can now design the plate elements with those results. We suggest you read the SkyCiv articles about Plate Design: Modulo di progettazione della piastra and applied code-based slabs examples in the following links: ACI, AS-3600 e Eurocodice 2.

Anche, with SkyCiv, we can get the base reactions for the foundation design. figura 12. Base reactions for RSA load case.

Just be aware of the results signs! All of them came in positive or absolute values. This is because we get the maximum absolute values for each design component when using an RSA method.

Se sei nuovo in SkyCiv, Iscriviti e testa tu stesso il software!

Questo articolo ti è stato utile?