Base Plate Design Example using AS 4100:2020, AS 3600:2018, AS 5216:2021
Dichiarazione del problema:
Determine whether the designed column-to-base plate connection is sufficient for a 50-kN tension load.
Dati dati:
Colonna:
Sezione colonna: 250x150x8 RHS
Area colonna: 5920 mm2
Materiale colonna: AS / NZS 1163 Gr. C350
Piastra di base:
Dimensioni della piastra di base: 350 mm x 350 mm
Spessore della piastra di base: 20 mm
Materiale della piastra di base: AS / NZS 1163 Gr. C250
Grout:
Grout thickness: 20 mm
Calcestruzzo:
Dimensioni concrete: 450 mm x 450 mm
Spessore di cemento: 400 mm
Materiale di cemento: N28
Cracked or Uncracked: Cracked
Anchors:
Anchor diameter: 16 mm
Effective embedment length: 250.0 mm
Embedded plate width: 70 mm
Embedded plate thickness: 10 mm
Anchor offset distance from face of column: 62.5 mm
saldature:
Weld type: Fillet
Weld category: SP
Classificazione del metallo di riempimento: E43XX
Anchor Data (a partire dal SkyCiv Calculator):
Definitions:
Load Path:
When a base plate is subjected to uplift (trazione) forze, these forces are transferred to the anchor rods, which in turn induce bending moments in the base plate. The bending action can be visualized as cantilever bending occurring around the flanges or web of the column section, depending on where the anchors are positioned.
Nel Software di progettazione della piastra di base Skyciv, only anchors located within the anchor tension zone are considered effective in resisting uplift. This zone typically includes areas near the column flanges or web. For rectangular columns, the anchor tension zone refers to the area adjacent to the column walls. Anchors outside this zone do not contribute to tension resistance and are excluded from the uplift calculations.
To determine the effective area of the base plate that resists bending, un carico 45-degree dispersion is assumed from the centerline of each anchor rod toward the column face. This dispersion defines the effective weld length and helps establish the effective bending width del piatto.
The assumption simplifies the base plate analysis by approximating how the uplift force spreads through the plate.
Anchor Groups:
La Software di progettazione della piastra di base Skyciv includes an intuitive feature that identifies which anchors are part of an anchor group for evaluating rottura concreta e concrete side-face blowout failures.
Un anchor group consists of multiple anchors with similar effective embedment depths and spacing, and are close enough that their projected resistance areas overlap. When anchors are grouped, their capacities are combined to resist the total tension force applied to the group.
Anchors that do not meet the grouping criteria are treated as single anchors. In questo caso, only the tension force on the individual anchor is checked against its own effective resistance area.
Prying Increase Factor:
La Software di progettazione della piastra di base Skyciv includes an option to apply a prying increase factor to account for additional tensile forces on the anchors due to prying action. This factor increases the load demand on the anchors during the anchor checks, providing a more conservative and realistic assessment where applicable. Per impostazione predefinita, the prying increase factor is set to 1.0, meaning no additional prying load is applied unless specified by the user.
Calcoli passo-passo:
Dai un'occhiata #1: Calcola la capacità di saldatura
Iniziare, we need to calculate the load per anchor and the effective weld length per anchor. The effective weld length is determined by the shortest length from the 45° dispersion, constrained by the actual weld length and anchor spacing.
For this calculation, anchors are classified as either end anchors o intermediate anchors. End anchors are located at the ends of a row or column of anchors, while intermediate anchors are positioned between them. The calculation method differs for each and depends on the column geometry. In questo esempio, there are two anchors along the web, and both are classified as end anchors.
For end anchors, the effective weld length is limited by the available distance from the anchor centerline to the column corner radius. The 45° dispersion must not extend beyond this boundary.
\(
l_r = \frac{d_{col} – 2t_{col} – 2r_{col} – s_y (n_{un carico,\testo{lato}} – 1)}{2} = frac{250 \, \testo{mm} – 2 \volte 8 \, \testo{mm} – 2 \volte 12 \, \testo{mm} – 150 \, \testo{mm} \volte (2 – 1)}{2} = 30 \, \testo{mm}
\)
On the inner side, the effective length is limited by half the anchor spacing. The total effective weld length for the end anchor is the sum of the outer and inner lengths.
\(
l_{eff,fine} = min sinistra( Fare, 0.5 s_y \right) + \min \left( Fare, l_r \right)
\)
\(
l_{eff,fine} = min sinistra( 62.5 \, \testo{mm}, 0.5 \volte 150 \, \testo{mm} \giusto) + \min \left( 62.5 \, \testo{mm}, 30 \, \testo{mm} \giusto) = 92.5 \, \testo{mm}
\)
Per questo esempio, the final effective weld length for the web anchor is taken as the effective length of the end anchor.
\(
l_{eff} = l_{eff,fine} = 92.5 \, \testo{mm}
\)
Successivamente, let’s calculate the load per anchor. For a given set of four (4) ancore, the load per anchor is:
\(
T_{u,ancorare} = frac{N_x}{n_{un carico,t}} = frac{50 \, \testo{kN}}{4} = 12.5 \, \testo{kN}
\)
Using the calculated effective weld length, we can now compute the required force per unit length acting on the weld.
\(
v^*_w = \frac{T_{u,ancorare}}{l_{eff}} = frac{12.5 \, \testo{kN}}{92.5 \, \testo{mm}} = 0.13514 \, \testo{metri ed è fissato alla base e fissato in alto}
\)
Adesso, noi useremo AS 4100:2020 Clausola 9.6.3.10 to calculate the design strength of the fillet weld.
\(
\phi v_w = \phi 0.6 f_{il tuo} E_w k_r = 0.8 \volte 0.6 \volte 430 \, \testo{MPa} \volte 5.657 \, \testo{mm} \volte 1 = 1.1676 \, \testo{metri ed è fissato alla base e fissato in alto}
\)
In addition to checking the weld, we also need to verify the resistance of the base metal against the applied tension force to ensure it does not govern the failure mode.
\(
\phi v_{wbm} = \phi \left( \min \left( F_{e _col} t_{col}, f_{e _bp} t_{p.p} \giusto) \giusto)
\)
\(
\phi v_{wbm} = 0.9 \volte sinistra( \min \left( 350 \, \testo{MPa} \volte 8 \, \testo{mm}, 250 \, \testo{MPa} \volte 20 \, \testo{mm} \giusto) \giusto) = 2.52 \, \testo{metri ed è fissato alla base e fissato in alto}
\)
In questo caso, the weld resistance governs over the base metal resistance.
Da 0.13514 metri ed è fissato alla base e fissato in alto < 1.1676 metri ed è fissato alla base e fissato in alto, La capacità di saldatura è sufficiente.
Dai un'occhiata #2: Calculate base plate flexural yielding capacity due to tension load
Usando il load per anchor and the offset distance from the center of the anchor to the face of the column (serving as the load eccentricity), the moment applied to the base plate can be calculated using a a sbalzo assumption.
\(
M^* = T_{u,ancorare} e = 12.5 \, \testo{kN} \volte 62.5 \, \testo{mm} = 781.25 \, \testo{kN} \cdot \text{mm}
\)
Successivamente, using the calculated effective weld length from the previous check as the bending width, we can calculate the Calcola la capacità portante of the base plate using AISC 360-22, Equazione 2-1:
\(
\phi M_s = \phi Z_{eff} f_{e _bp} = 0.9 \volte 9250 \, \testo{mm}^3 \times 250 \, \testo{MPa} = 2081.2 \, \testo{kN} \cdot \text{mm}
\)
Dove,
\(
Z_{eff} = frac{l_{eff} (t_{p.p})^ 2}{4} = frac{92.5 \, \testo{mm} \volte (20 \, \testo{mm})^ 2}{4} = 9250 \, \testo{mm}^ 3
\)
Da 781.25 kN-mm < 2081.2 kN-mm, the base plate flexural yielding capacity is sufficiente.
Dai un'occhiata #3: Calculate anchor rod tensile capacity
To evaluate the tensile capacity of the anchor rod, we refer to AS 5216:2021 Clausola 6.2.2 e AS 4100:2020 Clausola 9.2.2.2.
Primo, Determiniamo il controllare la capacità degli ancoraggi of the threaded portion of the rod, seguente AS 4100:2020 Clausola 7.2 e AS 1275–1985 Clause 1.7.
\(
A_n = \frac{\pi}{4} \sinistra( \frac{d_a}{\testo{mm}} – 0.9382 P \right)^ 2 \, \testo{mm}^2 = \frac{\pi}{4} \volte sinistra( \frac{16 \, \testo{mm}}{1 \, \testo{mm}} – 0.9382 \volte 2 \giusto)^2 \times 1 \, \testo{mm}^2 = 156.67 \, \testo{mm}^ 2
\)
Usando AS 4100:2020 Clausola 9.2.2, calcoliamo il nominal tension capacity of the bolt based on the tensile stress area and the material strength.
\(
N_{tf} = A_n F_{u\_anc} = 156.67 \, \testo{mm}^2 \times 800 \, \testo{MPa} = 125.33 \, \testo{kN}
\)
We then apply the appropriate resistance factor to obtain the design anchor capacity in tension.
\(
\phi N_{controllare la capacità degli ancoraggi,S} = \phi N_{tf} = 0.8 \volte 125.33 \, \testo{kN} = 100.27 \, \testo{kN}
\)
Recall the previously calculated tension load per anchor, and apply the prying increase factor if specified.
\(
N^* = p \left( \frac{N_x}{n_{un carico,t}} \giusto) = 1 \volte sinistra( \frac{50 \, \testo{kN}}{4} \giusto) = 12.5 \, \testo{kN}
\)
Da 12.5 kN < 100.27 kN, il anchor rod tensile capacity is sufficient.
Dai un'occhiata #4: Calculate concrete breakout capacity in tension
Before calculating the breakout capacity, we must first determine whether the member qualifies as a narrow member. Secondo AS 5216:2021 Clausola 6.2.3.8, the member meets the criteria for a narrow member. Pertanto, un carico modified effective embedment length must be used in the breakout capacity calculations. This adjustment also affects the characteristic spacing e characteristic edge distance, which must be modified accordingly.
Based on the narrow member criteria, il modified values for the anchor group are as follows:
- modified effective embedment length, \(h’_{ef} = 100 \, \testo{mm}\)
- modified characteristic spacing, \(s’_{cr} = 300 \, \testo{mm}\)
- modified characteristic edge distance, \(c’_{cr} = 150 \, \testo{mm}\)
Usando AS 5216: 2021 Clausola 6.2.3.3, calcoliamo il reference projected concrete cone area per un'unica ancora.
\(
A0_{c,N} = sinistra( s’_{cr,g1} \giusto)^2 = \left( 300 \, \testo{mm} \giusto)^2 = 90000 \, \testo{mm}^ 2
\)
Allo stesso modo, calcoliamo il actual projected concrete cone area of the anchor group.
\(
UN_{Nc} = L_{Nc} B_{Nc} = 450 \, \testo{mm} \volte 450 \, \testo{mm} = 202500 \, \testo{mm}^ 2
\)
Dove,
\(
L_{Nc} = min sinistra( c_{sinistra,g1}, c’_{cr,g1} + r_{embed\_plate} \giusto) + \min \left( s_{somma,z,g1}, s’_{cr,g1} \cdot \left( n_{z,g1} – 1 \giusto) \giusto) + \min \left( c_{giusto,g1}, c’_{cr,g1} + r_{embed\_plate} \giusto)
\)
\(
L_{Nc} = min sinistra( 87.5 \, \testo{mm}, 150 \, \testo{mm} + 18 \, \testo{mm} \giusto) + \min \left( 275 \, \testo{mm}, 300 \, \testo{mm} \Angolo di attrito (2 – 1) \giusto) + \min \left( 87.5 \, \testo{mm}, 150 \, \testo{mm} + 18 \, \testo{mm} \giusto)
\)
\(
L_{Nc} = 450 \, \testo{mm}
\)
\(
B_{Nc} = min sinistra( c_{superiore,g1}, c’_{cr,g1} + r_{embed\_plate} \giusto) + \min \left( s_{somma,y,g1}, s’_{cr,g1} \cdot \left( n_{y,g1} – 1 \giusto) \giusto) + \min \left( c_{parte inferiore,g1}, c’_{cr,g1} + r_{embed\_plate} \giusto)
\)
\(
B_{Nc} =\min \left( 150 \, \testo{mm}, 150 \, \testo{mm} + 18 \, \testo{mm} \giusto) + \min \left( 150 \, \testo{mm}, 300 \, \testo{mm} \Angolo di attrito (2 – 1) \giusto) + \min \left( 150 \, \testo{mm}, 150 \, \testo{mm} + 18 \, \testo{mm} \giusto)
\)
\(
B_{Nc} = 450 \, \testo{mm}
\)
La embedded plate effective radius is used to provide additional capacity for concrete breakout. To determine this, add the thickness of the embedded plate to half of the anchor diameter.
Successivamente, we evaluate the characteristic strength of a single anchor using AS 5216:2021 Eq. 6.2.3.2
\(
N0_{controllare la capacità degli ancoraggi,c} = k_1 \sqrt{\frac{f'_c}{\testo{MPa}}} \sinistra( \frac{h’_{ef,g1}}{\testo{mm}} \giusto)^{1.5} \, \testo{N}
\)
\(
N0_{controllare la capacità degli ancoraggi,c} = 8.9 \volte sqrt{\frac{28 \, \testo{MPa}}{1 \, \testo{MPa}}} \volte sinistra( \frac{100 \, \testo{mm}}{1 \, \testo{mm}} \giusto)^{1.5} \volte 0.001 \, \testo{kN} = 47.094 \, \testo{kN}
\)
Dove,
- \(Eurocodice di design con piastra di base in acciaio{1} = 8.9\) per ancore gettate
Adesso, we assess the effects of geometry by calculating the necessary parametri for breakout resistance.
The shortest edge distance of the anchor group is determined as:
\(
c_{min,N} = min sinistra( c_{sinistra,g1}, c_{giusto,g1}, c_{superiore,g1}, c_{parte inferiore,g1} \giusto) = min sinistra( 87.5 \, \testo{mm}, 87.5 \, \testo{mm}, 150 \, \testo{mm}, 150 \, \testo{mm} \giusto) = 87.5 \, \testo{mm}
\)
Secondo AS 5216:2021 Eq. 6.2.3.4, the value for the parameter accounting for distribution of stress in concrete is:
\(
\Psi_{S,N} = min sinistra( 0.7 + 0.3 \sinistra( \frac{c_{min,N}}{c’_{cr,g1}} \giusto), 1.0 \giusto) = min sinistra( 0.7 + 0.3 \volte sinistra( \frac{87.5 \, \testo{mm}}{150 \, \testo{mm}} \giusto), 1 \giusto) = 0.875
\)
La shell spalling effect is accounted for using AS 5216:2021 Equazione 6.2.3.5, dando:
\(
\Psi_{controllare la capacità degli ancoraggi,N} = min sinistra( 0.5 + \frac{h’_{ef,g1}}{\testo{mm} \Angolo di attrito 200}, 1.0 \giusto) = min sinistra( 0.5 + \frac{100 \, \testo{mm}}{1 \, \testo{mm} \Angolo di attrito 200}, 1 \giusto) = 1
\)
Inoltre, both the eccentricity factor che per il compression influence factor are taken as:
\(
\Psi_{ec,N} = 1
\)
\(
\Psi_{M,N} = 1
\)
We then combine all these factors and apply AS 5216:2021 Equazione 6.2.3.1 to evaluate the design concrete cone breakout resistance for the anchor group:
\(
\phi N_{controllare la capacità degli ancoraggi,c} = phi_{Mc} N0_{controllare la capacità degli ancoraggi,c} \sinistra( \frac{UN_{Nc}}{A0_{c,N}} \giusto) \Psi_{S,N} \Psi_{controllare la capacità degli ancoraggi,N} \Psi_{ec,N} \Psi_{M,N}
\)
\(
\phi N_{controllare la capacità degli ancoraggi,c} = 0.6667 \volte 47.094 \, \testo{kN} \volte sinistra( \frac{202500 \, \testo{mm}^ 2}{90000 \, \testo{mm}^ 2} \giusto) \volte 0.875 \volte 1 \volte 1 \volte 1 = 61.814 \, \testo{kN}
\)
La total applied tension load on the anchor group is calculated by multiplying the tension load per anchor by the number of anchors, with the prying increase factor applied as needed:
\(
N^* = p \left( \frac{N_x}{n_{un carico,t}} \giusto) n_{un carico,g1} = 1 \volte sinistra( \frac{50 \, \testo{kN}}{4} \giusto) \volte 4 = 50 \, \testo{kN}
\)
Da 50 kN < 61.814 kN the concrete breakout capacity is sufficiente.
Dai un'occhiata #5: Calculate anchor pullout capacity
La pullout capacity of an anchor is governed by the resistance at its embedded end. Primo, we compute the maximum anchor head dimension effective for pull out resistance, come da AS 5216:2021 Clausola 6.3.4.
\(
d_{h,\testo{max}} = min sinistra( b_{embed\_plate}, 6 \sinistra( t_{embed\_plate} \giusto) + d_a \right) = min sinistra( 70 \, \testo{mm}, 6 \volte (10 \, \testo{mm}) + 16 \, \testo{mm} \giusto) = 70 \, \testo{mm}
\)
Successivamente, we calculate the net bearing area of the rectangular embedded plate using:
\(
A_h = \left( d_{h,\testo{max}}^2 \right) – UN_{asta} = sinistra( (70 \, \testo{mm})^2 \right) – 201.06 \, \testo{mm}^2 = 4698.9 \, \testo{mm}^ 2
\)
Dove,
\(
UN_{asta} = frac{\pi}{4} (d_a)^2 = \frac{\pi}{4} \volte (16 \, \testo{mm})^2 = 201.06 \, \testo{mm}^ 2
\)
We then calculate the design basic anchor pullout strength usando AS 5216:2021 Clausola 6.3.4:
\(
N_{controllare la capacità degli ancoraggi,p} = phi_{Mc} k_2 A_h \left( f’_c \right) = 0.6667 \volte 7.5 \volte 4698.9 \, \testo{mm}^2 \times (28 \, \testo{MPa}) = 657.88 \, \testo{kN}
\)
Recall the previously calculated tension load per anchor:
\(
N^* = p \left( \frac{N_x}{n_{un carico,t}} \giusto) = 1 \volte sinistra( \frac{50 \, \testo{kN}}{4} \giusto) = 12.5 \, \testo{kN}
\)
Da 12.5 kN < 657.88 kN, the anchor pullout capacity is sufficiente.
Dai un'occhiata #6: Calculate side-face blowout capacity in Y-direction
Let’s consider Side-Face Blowout Anchor Group 1 for the capacity calculation. Referring to the Anchor Data Summary, Anchor IDs 3 e 4 are part of SFy Group 1.
We begin by calculating the edge distance to the failure edge.
\(
c_{z,\testo{min}} = min sinistra( c_{\testo{sinistra},g1}, c_{\testo{giusto},g1} \giusto) = min sinistra( 87.5 \, \testo{mm}, 362.5 \, \testo{mm} \giusto) = 87.5 \, \testo{mm}
\)
Successivamente, we determine the edge distance to the orthogonal edge.
\(
c_{y,\testo{min}} = min sinistra( c_{\testo{superiore},g1}, c_{\testo{parte inferiore},g1} \giusto) = min sinistra( 150 \, \testo{mm}, 150 \, \testo{mm} \giusto) = 150 \, \testo{mm}
\)
Usando AS 5216:2021 Clausola 6.2.7.3, let’s calculate the reference projected area of a single fastener.
\(
A0_{c,N.B} = sinistra( 4 c_{z,\testo{min}} \giusto)^2 = \left( 4 \volte 87.5 \, \testo{mm} \giusto)^2 = 122500 \, \testo{mm}^ 2
\)
Since we are checking the capacity of the anchor group, let’s get the actual projected area of the anchor group using AS 5216:2021 Clausola 6.2.7.2.
\(
UN_{Nc} = B_{c,N.B} Per calcolarlo{c,N.B} = 450 \, \testo{mm} \volte 325 \, \testo{mm} = 146250 \, \testo{mm}^ 2
\)
Dove,
\(
B_{c,N.B} = min sinistra( 2 c_{z,\testo{min}}, c_{\testo{superiore},g1} \giusto) + s_{\testo{somma},y,g1} + \min \left( 2 c_{z,\testo{min}}, c_{\testo{parte inferiore},g1} \giusto)
\)
\(
B_{c,N.B} = min sinistra( 2 \volte 87.5 \, \testo{mm}, 150 \, \testo{mm} \giusto) + 150 \, \testo{mm} + \min \left( 2 \volte 87.5 \, \testo{mm}, 150 \, \testo{mm} \giusto) = 450 \, \testo{mm}
\)
\(
Per calcolarlo{c,N.B} = 2 c_{z,\testo{min}} + \sinistra( \min \left( t_{\testo{conc}} – h_{\testo{ef}}, 2 c_{z,\testo{min}} \giusto) \giusto)
\)
\(
Per calcolarlo{c,N.B} = 2 \volte 87.5 \, \testo{mm} + \sinistra( \min \left( 400 \, \testo{mm} – 250 \, \testo{mm}, 2 \volte 87.5 \, \testo{mm} \giusto) \giusto) = 325 \, \testo{mm}
\)
In computing the characteristic concrete blow-out strength of an individual anchor, noi useremo AS 5216:2021 Clausola 6.2.7.2.
\(
N0_{controllare la capacità degli ancoraggi,cb} = k_5 \left( \frac{c_{z,\testo{min}}}{\testo{mm}} \giusto) \sqrt{\frac{A_h}{\testo{mm}^ 2}} \sqrt{\frac{f'_c}{\testo{MPa}}} \, N
\)
\(
N0_{controllare la capacità degli ancoraggi,cb} = 8.7 \volte sinistra( \frac{87.5 \, \testo{mm}}{1 \, \testo{mm}} \giusto) \volte sqrt{\frac{4698.9 \, \testo{mm}^ 2}{1 \, \testo{mm}^ 2}} \volte sqrt{\frac{28 \, \testo{MPa}}{1 \, \testo{MPa}}} \volte 0.001 \, \testo{kN}
\)
\(
N0_{controllare la capacità degli ancoraggi,cb} = 276.13 \, \testo{kN}
\)
Dove,
- \(Eurocodice di design con piastra di base in acciaio{5} = 8.7\) per calcestruzzo fessurato
- \(Eurocodice di design con piastra di base in acciaio{5} = 12.2\) for uncracked concrete
Poi, we will get the side-face blowout parameters.
The parameter accounting for the disturbance of the distribution of stresses in concrete can be calculated from AS 5216:2021 Clausola 6.2.7.4.
\(
\Psi_{S,N.B} = min sinistra( 0.7 + 0.3 \sinistra( \frac{c_{y,\testo{min}}}{2 c_{z,\testo{min}}} \giusto), 1.0 \giusto)
\)
\(
\Psi_{S,N.B} = min sinistra( 0.7 + 0.3 \volte sinistra( \frac{150 \, \testo{mm}}{2 \volte 87.5 \, \testo{mm}} \giusto), 1 \giusto) = 0.95714
\)
The equation from AS 5216:2021 Clausola 6.2.7.5 is then used to get the parameter accounting for the group effect.
\(
\Psi_{g,N.B} = max sinistra( \sqrt{n_{y,g1}} + \sinistra( 1 – \sqrt{n_{y,g1}} \giusto) \sinistra( \frac{\min \left( s_{y,g1}, 4 c_{z,\testo{min}} \giusto)}{4 c_{z,\testo{min}}} \giusto), 1.0 \giusto)
\)
\(
\Psi_{g,N.B} = max sinistra( \sqrt{2} + \sinistra( 1 – \sqrt{2} \giusto) \volte sinistra( \frac{\min \left( 150 \, \testo{mm}, 4 \volte 87.5 \, \testo{mm} \giusto)}{4 \volte 87.5 \, \testo{mm}} \giusto), 1 \giusto)
\)
\(
\Psi_{g,N.B} = 1.2367
\)
Infine, in reference to AS 5216:2021 Eq. 6.2.7 for headed anchor rods, il design concrete blow-out resistance è:
\(
\phi N_{controllare la capacità degli ancoraggi,cb} = \phi_M N0_{controllare la capacità degli ancoraggi,cb} \sinistra( \frac{UN_{Nc}}{A0_{c,N.B}} \giusto) \Psi_{S,N.B} \Psi_{g,N.B} \Psi_{ec,N}
\)
\(
\phi N_{controllare la capacità degli ancoraggi,cb} = 0.6667 \volte 276.13 \, \testo{kN} \volte sinistra( \frac{146250 \, \testo{mm}^ 2}{122500 \, \testo{mm}^ 2} \giusto) \volte 0.95714 \volte 1.2367 \volte 1 = 260.16 \, \testo{kN}
\)
For this anchor group, only two (2) anchors belong to group. Pertanto, il design tension force for the anchor group is:
\(
N^* = p \left( \frac{N_x}{n_{un carico,t}} \giusto) n_{y,g1}
\)
\(
N^* = 1 \volte sinistra( \frac{50 \, \testo{kN}}{4} \giusto) \volte 2 = 25 \, \testo{kN}
\)
Da 25 kN < 260.16 kN, the concrete side-face blowout along Y-direction is sufficiente.
Side-Face Blowout Anchor Group 2 can also be used and will yield the same result, since the design is symmetric.
Dai un'occhiata #7: Calculate side-face blowout capacity in Z-direction
This calculation is not applicable for failure along the Z-direction, as the edge distance to the sides exceeds half of the effective embedment length.
Riepilogo del progetto
La Software di progettazione della piastra di base Skyciv can automatically generate a step-by-step calculation report for this design example. Fornisce inoltre un riepilogo dei controlli eseguiti e dei loro rapporti risultanti, rendere le informazioni facili da capire a colpo d'occhio. Di seguito è riportata una tabella di riepilogo del campione, che è incluso nel rapporto.
Rapporto campione Skyciv
Clicca qui to download a sample report.
Acquista software di base
Acquista da solo la versione completa del modulo di progettazione della piastra di base senza altri moduli SkyCiv. Questo ti dà un set completo di risultati per la progettazione della piastra di base, tra cui report dettagliati e più funzionalità.