 Τεκμηρίωση SkyCiv

Ο οδηγός σας για το λογισμικό SkyCiv - μαθήματα, οδηγοί και τεχνικά άρθρα

1. Σπίτι
2. Σχεδιασμός SkyCiv RC
3. Ενότητα σχεδίασης πιάτων
4. Ανάλυση Πλακών Οπλισμένου Σκυροδέματος μονής και διπλής κατεύθυνσης

# Ανάλυση Πλακών Οπλισμένου Σκυροδέματος μονής και διπλής κατεύθυνσης

## Γενική περιγραφή

SkyCiv has a robust and advanced module for reinforced concrete slab design. Για πρόσβαση σε αυτή τη δυνατότητα, you must have first built a model on SkyCiv S3D and then call the module for automatic calculation with different construction codes such as ACI-318, Ευρωπαϊκά και Αυστραλιανά Πρότυπα, και ούτω καθεξής. The module’s primary purpose for plate design is to provide the steel reinforcement rebar quantity along the plate. Φιγούρα 1. SkyCiv Slab Design Module

Εάν είστε νέος στο SkyCiv, Εγγραφείτε και δοκιμάστε μόνοι σας το λογισμικό!

SkyCiv documentation provides excellent content, including examples and cases of analysis, both for learning if you are new to the modules and for comparing the results from the plate design module with hand calculations. Feel free to check our design examples according to ACI-318, Ευρωκώδικας, και AS3600.

We suggest you read this article before deeply analyzing complex slab systems. Εδώ, you will learn how the bending moments differ depending on slab plan dimensions. There are two cases of study, one-way and two-way slabs. Έτσι, let’s start reading!

## One-way versus two-way slab behavior

Let’s consider the slab example in the following image, where there is support on each slab edge, and we establish this will behave as a two-way plate, αυτό είναι, having a bending moment in the two principal plan directions. Φιγούρα 2. Simple two-way slab example on bending. (David Darwin, Charles W.Dolan, Arthur H. Nilson, “Σχεδιασμός Κατασκευών Σκυροδέματος,” Fifteenth Edition, McGraw-Hill Education)

We can define the vertical displacement as ($$l_a < l_b$$):

$$\Delta_a = \frac{{5}{w_a}{l_a^4}}{384{μι}{Εγώ}}$$

$$\Delta_b = \frac{{5}{w_b}{l_b^4}}{384{μι}{Εγώ}}$$

Due to the slab being a continuous system, both vertical deflections will have the same value. We can compare the equations to express a relation between the load being carried by each direction as a function of the plan dimensions.

$$\Delta_a = \Delta_b \to \frac{{5}{w_a}{l_a^4}}{384{μι}{Εγώ}} = frac{{5}{w_b}{l_b^4}}{384{μι}{Εγώ}}$$

$$\frac{w_a}{w_b} = {(\frac{l_b}{l_a}})^ 4$$

All reinforced concrete references for slab design divide into one-way and two-way if the quotient of $$\frac{l_b}{l_a}$$ is greater or less than a value of 2, αντίστοιχα.

Using the above equations, when $$\frac{l_b}{l_a}=2$$, the load carried by short direction is equal to $$w_a = {16}{w_b}$$ and when the value is $$\frac{l_b}{l_a}=1$$, the load is distributed equally in both directions $$w_a ={w_b}$$.

### One-way slabs moments

Έτσι, we can see that when the quotient of dimensions is greater than 2, practically, all the loads and bending moments will be concentrated only in the short direction. This case is the one-way slab behavior, and the maximum bending moment can be obtained as a simply supported beam with a unitary width.

$$Μ_{Μέγιστη,1,ρε}= frac{{w_a}{1 Μ}{l_a^2}}{8}$$

### Two-way slabs moments

The solution of the case of the two-way slab is a complex and challenging problem in structural mechanics. You can see in the figure below the general analysis consists of a plate with entire forces and moments in each direction. Φιγούρα 3. Actions on plate element (bending and torsional moments; normal and shear forces)

This difficulty comes from the actual problem to solve is a fourth-order partial differential equation that involves the bending in two directions. The shape of this equation is:

$$\frac{\partial^4{β}}{{\partial}{x^4}} + {2}\frac{{\partial^4}{β}}{{{\partial}{x^2}}{{\partial}{y^2}}}+\frac{\partial^4{β}}{{\partial}{x^4}}-\frac{f_z}{ρε} = 0$$

Where the plate stiffness (using the elastic mechanical and geometric properties) είναι $$D=\frac{{μι}{t^3}}{{12}{(1-\nu^2)}}$$.

The analytical solution of this equation is only available for straightforward support conditions. The only way to obtain a possible solution for practical and actual live cases is through numerical methods such as the Finite Element Method.

SkyCiv uses this approach to solve plate analysis. On the following links, you will have access to tutorials to learn about SkyCiv platform characteristics: Σχεδιασμός πιάτων σε S3D και Πώς να μοντελοποιήσετε πιάτα? .

Εάν είστε νέος στο SkyCiv, Εγγραφείτε και δοκιμάστε μόνοι σας το λογισμικό!

Σας βοήθησε αυτό το άρθρο?