Τεκμηρίωση SkyCiv

Ο οδηγός σας για το λογισμικό SkyCiv - μαθήματα, οδηγοί και τεχνικά άρθρα

Αναλυτικά Shell FEA

  1. Σπίτι
  2. Αναλυτικά Shell FEA
  3. Σεμινάρια (Μέλος Shell FEA)
  4. Παράδειγμα 3. Καθολικός λυγισμός δοκού μεταξύ υποστυλωμάτων

Παράδειγμα 3. Καθολικός λυγισμός δοκού μεταξύ υποστυλωμάτων

Σε αυτό το παράδειγμα, we’ll demonstrate the analysis of a steel frame structure consisting of two columns and a tapered beam between them. Both the columns and the beam include stiffeners. Επιπροσθέτως, the beam’s web features circular openings. The columns have a plate thickness of 16 χιλ, while the beam plates are 12 mm thick. The beam is subjected to three vertical forces, totaling 5000 ΚΝ.

The upcoming analysis will encompass both geometric and material nonlinearity. It also offers real-time tracking of the load-displacement curve, enabling an in-depth investigation of the member’s capacity while optimizing computational time. The results will provide insights into the member’s capacity, its deformed state, and its failure status.

Βήμα 1. Model Parts

Go to the ‘Main Parts’ menu and select the ‘PROFILE’ tab. To input the sections’ geometry, import a DXF file stored locally on your PC. The DXF file can be received from εδώ

Navigate to the ‘SCHEME’ αυτί. When you click on the ‘Updated plate tcolumn cell, a popup window will appear. In this window, update the thickness for all edges to t=0 mm.

 

Add diaphragms to the sections, selecting the ‘Polygon’ τύπος. The edges for the diaphragm are defined in a popup window that appears when you click on the ‘Diaphragm Edgescolumn cell. In the ‘DIAPHRAGM INPUT’, select the edges that form the diaphragm shape and input the thickness (τ).

 

Add diaphragms to the sections, selecting the ‘Polygon’ τύπος. The edges for the diaphragm are defined in a popup window that appears when you click on the ‘Diaphragm Edgescolumn cell. In the ‘DIAPHRAGM INPUT’, select the edges that form the diaphragm shape and input the thickness (τ).

Add diaphragms to the sections, selecting the ‘Polygon’ τύπος. The edges for the diaphragm are defined in a popup window that appears when you click on the ‘Diaphragm Edgescolumn cell. In the ‘DIAPHRAGM INPUT’, select the edges that form the diaphragm shape and input the thickness (τ).

Βήμα 2. Πλέγμα

Navigate to the ‘Meshing’ μενού. Set the FE element size to 50 χιλ, by frame set sub-mesh to the beam edges and then click the ‘Generate’ κουμπί.

Βήμα 3. Boundaries and Load

Go to the ‘Boundaries’ > ‘Nodes (Εθιμο)‘ menu. Add a new boundary group named ‘Group: 1. Select the nodes and apply fixed constrains

 

Go to the ‘Loads > ‘Force Area (Εθιμο)‘ menu. Add a new Load group named ‘Group: 1. Select the elements above vertical stiffeners, and then assign a load Fy of 5000 ΚΝ

Βήμα 4. Linear Buckling Analysis

Navigate to the ‘Analysis‘ menu. Select Linear Buckling. Click ‘Perform Analysis’ button.

Βήμα 5. Imperfection from buckling mode

Navigate to the ‘Results’ μενού, choose your preferred results options, and click ‘Displayto view the deformed state of the model. Click ‘Set Imperf.’. Navigate to the ‘Imperfections‘ > ‘From buckling’ menu, set scaling to 5 χιλ.

 

Βήμα 6. Μη γραμμική ανάλυση

Navigate to the ‘Analysis‘ menu. Select Nonlinear Explicit including geometry and material nonlinearity. Click ‘Perform Analysis’ button.

 

While the analysis is in progress, navigate to ‘Chart’ menu. Πρώτα, select a node to measure the Uy displacement (βήματα 1 και 2). Τότε, using frame selection, choose nodes from which to extract the Ry reaction forces (βήματα 3 και 4). Monitor the chart’s changes to identify the critical force (Pcr) that leads the structure to failure. Terminate the ongoing analysis once the failure state is detected.

 

 

 

 

Βήμα 7. Αποτελέσματα

Navigate to the ‘Results’ μενού, choose your preferred results options, and click ‘Displayto view the deformed state of the model.

 

 

 

 

 

 

 

Σας βοήθησε αυτό το άρθρο?
Ναί Οχι

Πώς μπορούμε να βοηθήσουμε?

Μεταβείτε στην κορυφή