Base Plate Design Example using CSA S16:19 and CSA A23.3:19
Problemanweisung:
Bestimmen Sie, ob die konstruierte Säule-zu-Base-Plattenverbindung für eine Spannungsbelastung von 50 km ausreicht.
Gegebene Daten:
Spalte:
Spaltenabschnitt: HS324X9.5
Säulenbereich: 9410 mm2
Säulenmaterial: 230G
Grundplatte:
Grundplattenabmessungen: 500 mmx 500 mm
Grundplattendicke: 20 mm
Grundplattenmaterial: 230G
Fugenmörtel:
Fugenmörtel Dicke: 20 mm
Beton:
Konkrete Abmessungen: 550 mmx 550 mm
Betondicke: 200 mm
Betonmaterial: 20.68 MPa
Geknackt oder ungekrönt: Geknackt
Anker:
Ankerdurchmesser: 19.1 mm
Effektive Einbettungslänge: 130.0 mm
Hook length: 60mm
Ankerversatz Abstand vom Gesicht der Säule: 120.84 mm
Schweißnähte:
Schweißtyp: CJP
Füllmetallklassifizierung: E43XX
Ankerdaten (von Skyciv -Taschenrechner):
Definitionen:
Lastpfad:
Wenn eine Grundplatte einer Auftriebsausgabe ausgesetzt ist (zugfest) Kräfte, Diese Kräfte werden auf die Ankerstangen übertragen, was wiederum Biege Momente in der Grundplatte hervorruft. Die Biegeaktion kann als visualisiert werden als Beuge des Auslegers Um die Flansche oder das Netz des Spaltenabschnitts auftreten, abhängig davon, wo die Anker positioniert sind.
In dem SkyCiv Basisplatten-Design-Software, Nur Anker innerhalb der Ankerspannungszone werden als wirksam angesehen, um die Häufigkeit zu widerstehen. Diese Zone enthält typischerweise Bereiche in der Nähe der Spaltenflansche oder des Netzes. In the case of a circular column, the anchor tension zone includes the entire area outside the column perimeter. Anker außerhalb dieser Zone tragen nicht zum Spannungswiderstand bei und sind von den Anhebungsberechnungen ausgeschlossen.
Um den effektiven Bereich der Grundplatte zu bestimmen, der sich der Biegung widersetzt, ein 45-Gradispersion wird von der Mittellinie jeder Ankerstange in Richtung der Säulenfläche angenommen. Diese Dispersion definiert die effektive Schweißlänge und hilft, die zu etablieren Effektive Biegebreite der Platte.
Die Annahme vereinfacht die Grundplattenanalyse, indem sie sich annähert, wie sich die Erhöhungskraft durch die Platte ausbreitet.
Ankergruppen:
Mit der SkyCiv Basisplatten-Design-Software Enthält eine intuitive Funktion, die identifiziert, welche Anker Teil einer Ankergruppe für die Bewertung sind Betonausbruch und Beton-Seitenflächen-Blowout Fehler.
Ein Ankergruppe besteht aus mehreren Ankern mit ähnlichen effektiven Einbettungstiefen und Abstand, und sind nah genug, dass ihre Projizierte Widerstandsbereiche überlappen sich. Wenn Anker gruppiert sind, Ihre Kapazitäten werden kombiniert, um der Gesamtspannungskraft zu widerstehen, die der Gruppe angewendet wird.
Anker, die die Gruppierungskriterien nicht erfüllen, werden als behandelt einzelne Anker. In diesem Fall, Nur die Spannungskraft am individuellen Anker wird gegen seinen eigenen wirksamen Widerstandsbereich überprüft.
Schritt-für-Schritt-Berechnungen:
Prüfen #1: Berechnen Sie die Schweißkapazität
Anwenden seismischer Lasten, we need to calculate the load per anchor and determine the effective weld length for each anchor. Mit der effektive Schweißlänge is based on a 45° dispersion line drawn from the center of the anchor to the face of the column. If this 45° line does not intersect the column, bleibt die tangent points are used instead. zusätzlich, if the anchors are closely spaced, the effective weld length is reduced to avoid overlap. Schließlich, the sum of all effective weld lengths must not exceed the actual weldable length available along the column circumference.
Let’s apply this to our example. Based on the given geometry, the 45° line from the anchor does not intersect the column. Als Ergebnis, the arc length between the tangent points is used instead. This arc length must also account for any adjacent anchors, with any overlapping portions subtracted to avoid double-counting. The calculated arc length is:
\(
l_{\Text{arc}} = 254.47 \, \Text{mm}
\)
This arc length calculation is fully automated in the SkyCiv Base Plate Design Software, but it can also be performed manually using trigonometric methods. You can try the free tool from this link.
Considering the available weldable length along the column’s circumference, the final effektive Schweißlänge ist:
\(
l_{\Text{eff}} = min links( l_{\Text{arc}}, \frac{\pi d_{\Text{col}}}{N_{ein,t}} \richtig) = min links( 254.47 \, \Text{mm}, \frac{\pi \times 324 \, \Text{mm}}{4} \richtig) = 254.47 \, \Text{mm}
\)
Als nächstes, Berechnen wir die Last pro Anker. Für einen bestimmten Satz von vier (4) Anker, Die Last pro Anker ist:
\(
T_{u,\Text{Anker}} = frac{N_x}{N_{ein,t}} = frac{50 \, \Text{kN}}{4} = 12.5 \, \Text{kN}
\)
Unter Verwendung der berechneten effektiven Schweißlänge, we can now compute the required force per unit length acting on the weld.
\(
v_f = \frac{T_{u,\Text{Anker}}}{l_{\Text{eff}}} = frac{12.5 \, \Text{kN}}{254.47 \, \Text{mm}} = 0.049122 \, \Text{kN / mm}
\)
Jetzt, Wir beziehen uns auf CSA S16:19 Klausel 13.13.3.1 to calculate the factored resistance of the complete joint penetration (CJP) schweißen. This requires the base metal resistance, expressed in force per unit length, for both the column and the base plate materials.
\(
v_{r,\Text{bm}} = phi links( \min \left( F_{j,\Text{col}} t_{\Text{col}}, F_{j,\Text{bp}} t_{\Text{bp}} \richtig) \richtig)
\)
\(
v_{r,\Text{bm}} = 0.9 \mal links( \min \left( 230 \, \Text{MPa} \mal 9.53 \, \Text{mm}, 230 \, \Text{MPa} \mal 20 \, \Text{mm} \richtig) \richtig) = 1.9727 \, \Text{kN / mm}
\)
Schon seit 0.049122 kN / mm < 1.9727 kN / mm, Die Schweißkapazität ist ausreichend.
Prüfen #2: Berechnen Sie die Kapazität der Grundplattenflexus aufgrund der Spannungsbelastung
Using the load per anchor and the offset distance from the center of the anchor to the face of the column, Der auf die Grundplatte angewendete Moment kann mit a berechnet werden Ausleger Annahme. For a circular column, the load eccentricity is determined by considering the sagitta of the welded arc, and can be calculated as follows:
\(
e_{\Text{pipe}} = d_o + r_{\Text{col}} \links( 1 – \cos links( \frac{l_{\Text{eff}}}{2 r_{\Text{col}}} \richtig) \richtig)
\)
\(
e_{\Text{pipe}} = 120.84 \, \Text{mm} + 162 \, \Text{mm} \mal links( 1 – \cos links( \frac{254.47 \, \Text{mm}}{2 \mal 162 \, \Text{mm}} \richtig) \richtig) = 168.29 \, \Text{mm}
\)
The induced moment is computed as:
\(
M_f = T_{u,\Text{Anker}} e_{\Text{pipe}} = 12.5 \, \Text{kN} \mal 168.29 \, \Text{mm} = 2103.6 \, \Text{kN} \CDOT Text{mm}
\)
Als nächstes, we will determine the bending width of the base plate. Dafür, we use the chord length corresponding to the effective weld arc.
\(
\theta_{\Text{Arbeit}} = frac{l_{\Text{eff}}}{0.5 d_{\Text{col}}} = frac{254.47 \, \Text{mm}}{0.5 \mal 324 \, \Text{mm}} = 1.5708
\)
\(
b = d_{\Text{col}} \links( \Sünde links( \frac{\theta_{\Text{Arbeit}}}{2} \richtig) \richtig) = 324 \, \Text{mm} \mal links( \Sünde links( \frac{1.5708}{2} \richtig) \richtig) = 229.1 \, \Text{mm}
\)
Schließlich, Wir können die berechnen factored flexural resistance der Grundplatte verwenden CSA S16:19 Klausel 13.5.
\(
M_r = \phi F_{j,\Text{bp}} Z_{\Text{eff}} = 0.9 \mal 230 \, \Text{MPa} \mal 22910 \, \Text{mm}^3 = 4742.4 \, \Text{kN} \CDOT Text{mm}
\)
Wo,
\(
Z_{\Text{eff}} = frac{b (t_{\Text{bp}})^ 2}{4} = frac{229.1 \, \Text{mm} \mal (20 \, \Text{mm})^ 2}{4} = 22910 \, \Text{mm}^ 3
\)
Schon seit 2103.6 KN-MM < 4742.4 KN-MM, Die Grundkapazität der Grundplattenbiegung ist ausreichend.
Prüfen #3: Berechnen Sie die Ankerstange Zugkapazität
To evaluate the tensile capacity of the anchor rod, we refer to CSA A23.3:19 Clause D.6.1.2 and CSA S16:19 Klausel 25.3.2.1.
Zuerst, Wir bestimmen die specified tensile strength of the anchor steel. This is the lowest value permitted by CSA A23.3:19 Clause D.6.1.2.
\(
f_{\Text{uta}} = min links( F_{u,\Text{anc}}, 1.9 F_{j,\Text{anc}}, 860 \richtig) = min links( 400 \, \Text{MPa}, 1.9 \mal 248.2 \, \Text{MPa}, 860.00 \, \Text{MPa} \richtig) = 400 \, \Text{MPa}
\)
Als nächstes, Wir bestimmen die effective cross-sectional area of the anchor rod in tension using CAC Concrete Design Handbook, 3RD Edition, Tabelle 12.3.
\(
EIN_{ich weiß,N.} = 215 \, \Text{mm}^ 2
\)
With these values, we apply CSA A23.3:19 Gl. D.2 to compute the factored tensile resistance of the anchor rod.
\(
N_{\Text{sar}} = A_{ich weiß,N.} \phi_s f_{\Text{uta}} R = 215 \, \Text{mm}^2 \times 0.85 \mal 400 \, \Text{MPa} \mal 0.8 = 58.465 \, \Text{kN}
\)
zusätzlich, Wir bewerten die factored tensile resistance according to CSA S16:19 Klausel 25.3.2.1.
\(
T_r = \phi_{ar} 0.85 EIN_{ar} F_{u,\Text{anc}} = 0.67 \mal 0.85 \mal 285.02 \, \Text{mm}^2 \times 400 \, \Text{MPa} = 64.912 \, \Text{kN}
\)
After comparing the two, we identify that the factored resistance calculated using CSA A23.3:19 governs in this case.
Recall the previously calculated tension load per anchor:
\(
N_{fa} = frac{N_x}{N_{ein,t}} = frac{50 \, \Text{kN}}{4} = 12.5 \, \Text{kN}
\)
Schon seit 12.5 kN < 58.465 kN, the anchor rod tensile capacity is ausreichend.
Prüfen #4: Calculate concrete breakout capacity in tension
Before calculating the breakout capacity, we must first determine whether the member qualifies as a narrow member. Gemäß CSA A23.3:19 Clause D.6.2.3, the member does not meet the criteria for a narrow member. Deshalb, the given effective embedment length will be used in the calculations.
Verwenden von CSA A23.3:19 Gl. D.5, wir berechnen die maximum projected concrete cone area für einen einzelnen Anker, based on the effective embedment length.
\(
EIN_{Merken} = 9 (h_{ef,s1})^2 = 9 \mal (130 \, \Text{mm})^2 = 152100 \, \Text{mm}^ 2
\)
Ähnlich, we use the effective embedment length to calculate the Tatsächlicher projizierter Betonkegelbereich of the single anchor.
\(
EIN_{Nc} = L_{Nc} B_{Nc} = 270 \, \Text{mm} \mal 270 \, \Text{mm} = 72900 \, \Text{mm}^ 2
\)
Wo,
\(
L_{Nc} = left( \min \left( c_{\Text{links},s1}, 1.5 h_{ef,s1} \richtig) \richtig) + \links( \min \left( c_{\Text{richtig},s1}, 1.5 h_{ef,s1} \richtig) \richtig)
\)
\(
L_{Nc} = left( \min \left( 475 \, \Text{mm}, 1.5 \mal 130 \, \Text{mm} \richtig) \richtig) + \links( \min \left( 75 \, \Text{mm}, 1.5 \mal 130 \, \Text{mm} \richtig) \richtig)
\)
\(
L_{Nc} = 270 \, \Text{mm}
\)
\(
B_{Nc} = left( \min \left( c_{\Text{oben},s1}, 1.5 h_{ef,s1} \richtig) \richtig) + \links( \min \left( c_{\Text{Unterseite},s1}, 1.5 h_{ef,s1} \richtig) \richtig)
\)
\(
B_{Nc} = left( \min \left( 75 \, \Text{mm}, 1.5 \mal 130 \, \Text{mm} \richtig) \richtig) + \links( \min \left( 475 \, \Text{mm}, 1.5 \mal 130 \, \Text{mm} \richtig) \richtig)
\)
\(
B_{Nc} = 270 \, \Text{mm}
\)
Als nächstes, Wir bewerten die factored basic concrete breakout resistance eines einzelnen Ankers verwenden CSA A23.3:19 Gl. D.6
\(
N_{br} = k_c \phi \lambda_a \sqrt{\frac{f’_c}{\Text{MPa}}} \links( \frac{h_{ef,s1}}{\Text{mm}} \richtig)^{1.5} R N
\)
\(
N_{br} = 10 \mal 0.65 \mal 1 \mal sqrt{\frac{20.68 \, \Text{MPa}}{1 \, \Text{MPa}}} \mal links( \frac{130 \, \Text{mm}}{1 \, \Text{mm}} \richtig)^{1.5} \mal 1 \mal 0.001 \, \Text{kN} = 43.813 \, \Text{kN}
\)
Wo,
- \(k_{c} = 10\) für einbetonierte Anker
- \(\lambda = 1.0 \) for normal-weight concrete
Jetzt, we assess the effects of geometry by calculating the edge effect factor.
Der kürzeste Randabstand der Ankergruppe wird als bestimmt als:
\(
c_{ein,\Text{Min.}} = min links( c_{\Text{links},s1}, c_{\Text{richtig},s1}, c_{\Text{oben},s1}, c_{\Text{Unterseite},s1} \richtig) = min links( 475 \, \Text{mm}, 75 \, \Text{mm}, 75 \, \Text{mm}, 475 \, \Text{mm} \richtig) = 75 \, \Text{mm}
\)
Gemäß CSA A23.3:19 Gl. D.10 and D.11, the breakout edge effect factor ist:
\(
\Psi_{ed,N.} = min links( 1.0, 0.7 + 0.3 \links( \frac{c_{ein,\Text{Min.}}}{1.5 h_{ef,s1}} \richtig) \richtig) = min links( 1, 0.7 + 0.3 \mal links( \frac{75 \, \Text{mm}}{1.5 \mal 130 \, \Text{mm}} \richtig) \richtig) = 0.81538
\)
Zusätzlich, beide cracking factor und das splitting factor werden als:
\(
\Psi_{c,N.} = 1
\)
\(
\Psi_{cp,N.} = 1
\)
Dann, we combine all these factors and use ACI 318-19 Gl. 17.6.2.1b Um die zu bewerten factored concrete breakout resistance of the single anchor:
\(
N_{cbr} = left( \frac{EIN_{Nc}}{EIN_{Merken}} \richtig) \Psi_{ed,N.} \Psi_{c,N.} \Psi_{cp,N.} N_{br} = left( \frac{72900 \, \Text{mm}^ 2}{152100 \, \Text{mm}^ 2} \richtig) \mal 0.81538 \mal 1 \mal 1 \mal 43.813 \, \Text{kN} = 17.122 \, \Text{kN}
\)
Recall the previously calculated tension load per anchor:
\(
N_{fa} = frac{N_x}{N_{ein,s}} = frac{50 \, \Text{kN}}{4} = 12.5 \, \Text{kN}
\)
Schon seit 12.5 kN < 17.122 kN Die Betonausbruchkapazität ist ausreichend.
This concrete breakout calculation is based on Anchor ID #1. The same capacity will apply to the other anchors due to the symmetric design.
Prüfen #5: Berechnen Sie die Ankerauszugskapazität
The pullout capacity of an anchor is governed by the resistance at its embedded end. For hooked anchors, it is dependent on its hook length.
We compute the factored basic anchor pullout resistance pro CSA A23.3:19 Gl. D.17.
\(
N_{pr} = \Psi_{c,p} 0.9 \phi (f’_c) e_h d_a R = 1 \mal 0.9 \mal 0.65 \mal (20.68 \, \Text{MPa}) \mal 60 \, \Text{mm} \mal 19.05 \, \Text{mm} \mal 1 = 13.828 \, \Text{kN}
\)
Recall the previously calculated tension load per anchor:
\(
N_{fa} = frac{N_x}{N_{ein,t}} = frac{50 \, \Text{kN}}{4} = 12.5 \, \Text{kN}
\)
Schon seit 12.5 kN < 13.828 kN, Die Ankerauszugskapazität ist ausreichend.
Prüfen #6: Berechnen Sie die Blowout-Kapazität der Seitengesicht in der y-Richtung
This calculation is not applicable for hooked anchors.
Prüfen #7: Calculate side-face blowout capacity in Z-direction
This calculation is not applicable for hooked anchors.
Entwurfszusammenfassung
Mit der Skyciv Base Plate Design Software kann automatisch einen Schritt-für-Schritt-Berechnungsbericht für dieses Entwurfsbeispiel erstellen. Es enthält auch eine Zusammenfassung der durchgeführten Schecks und deren resultierenden Verhältnisse, Die Informationen auf einen Blick leicht zu verstehen machen. Im Folgenden finden Sie eine Stichprobenzusammenfassungstabelle, Welches ist im Bericht enthalten.
SKYCIV -Beispielbericht
Sample report will be added soon.
Basisplattensoftware kaufen
Purchase the full version of the base plate design module onits own without any other SkyCiv modules. Auf diese Weise erhalten Sie einen vollständigen Satz von Ergebnissen für die Basisplattendesign, Einbeziehung detaillierter Berichte und mehr Funktionen.