Beispiel 1
Bestimmen Sie die Spannungen eines T-Profils, das kombinierten Kräften ausgesetzt ist.
Vergleich der Ergebnisse
Ergebnis | Ort | SkyCiv SB-Analyse | Handbuch | Dritte Seite |
Primäre Spannungen (MPa) | ||||
Axial | max | 2.794 | \(\frac{Bereich}{Axial}= frac{10·1000}{3579} = 2.794\)
(0.00%) |
2.794
(0.00%) |
Mindest | 2.794 | \(\frac{Bereich}{Axial}= frac{10·1000}{3579} = 2.794\)
(0.00%) |
2.794
(0.00%) |
|
Y biegen | max | 14.234 | \(\frac{Y biegen}{I_y/y_{max}}= frac{1·1000000}{6.32306·10^6/90} =14.234\)
(0.00%) |
14.234
(0.00%) |
Mindest | -14.234 | \(\frac{Y biegen}{I_y/y_{Mindest}}= frac{1·1000000}{6.32306·10^6/-90} =-14.234\)
(0.00%) |
-14.234
(0.00%) |
|
Z biegen | max | 3.723 | \(\frac{Z biegen}{I_z/z_{max}}= frac{1·1000000}{1.05786·10^7/39,3877} =3.723\)
(0.00%) |
3.723
(0.00%) |
Mindest | -14.237 | \(\frac{Z biegen}{I_z/z_{Mindest}}= frac{1·1000000}{1.05786·10^7/-150,6123} =-14.237\)
(0.00%) |
-14.237
(0.00%) |
|
Resultierende Scherung Y | max | 1.123 | \(\frac{Scherung Y·Q_z}{Ich_z·t}= frac{1·1000·7,93943·10^4}{1.05786·10^7·7} = 1.072\)
(4.54%) |
1.120
(0.26%) |
Resultierende Scherung Z | max | 0.698 | \(\frac{Scherung Z·Q_y}{Ich_y·t}= frac{1·1000·5,25658·10^4}{6.32306·10^6·13} = 0.639\)
(8.45%) |
0.709
(1.57%) |
Drehung | max | 9.956 | \(\frac{r_{max}}{J.}= frac{0.1·1000000·13,5357}{1.46870·10^5} = 9.216\)
(7.43%) |
9.570
(3.87%) |
Beispiel 2
Bestimmen Sie die Spannungen eines Abschnitts, der kombinierten Kräften ausgesetzt ist.
Vergleich der Ergebnisse
Ergebnis | Ort | SkyCiv SB-Analyse | Handbuch | Dritte Seite |
Primäre Spannungen (MPa) | ||||
Axial | max | 18.729 | \(\frac{Bereich}{Axial}= frac{10·1000}{533.9368} = 18.729\)
(0.00%) |
18.73
(0.00%) |
Mindest | 18.729 | \(\frac{Bereich}{Axial}= frac{10·1000}{533.9368} = 18.729\)
(0.00%) |
18.793
(0.00%) |
|
Y biegen | max | 166.538 | \(\frac{M_y·\cos(\Alpha)}{\frac{Ich_y}{z_{max}}}+\frac{M_y·\sin(\Alpha)}{\frac{I_z}{y_{max}}}= frac{1000000·\cos(-0.1562^ Zirkel)}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562^ Zirkel)}{\frac{9.59281·10^4}{14.1016}}=166.694\)
(0.00%) |
166.5
(0.00%) |
Mindest | -165.951 | \(\frac{M_y·\cos(\Alpha)}{\frac{Ich_y}{z_{Mindest}}}+\frac{M_y·\sin(\Alpha)}{\frac{I_z}{y_{Mindest}}}= frac{1000000·\cos(-0.1562^ Zirkel)}{\frac{3.84955·10^5}{30.7351}}+\frac{1000000·\sin(-0.1562^ Zirkel)}{\frac{9.59281·10^4}{-15.9392}}=166.045\)
(0.00%) |
-166.0
(0.00%) |
|
Z biegen | max | 97.189 | \(\frac{M_z·\cos(\Alpha)}{\frac{I_z}{y_{max}}}+\frac{M_z·\sin(\Alpha)}{\frac{Ich_y}{z_{max}}}= frac{1000000·\cos(-0.1562^ Zirkel)}{\frac{3.84955·10^5}{37.2424}}+\frac{1000000·\sin(-0.1562^ Zirkel)}{\frac{9.59281·10^4}{-15.7027}}=97.19\)
(0.00%) |
97.19
(0.00%) |
Mindest | -109.639 | \(\frac{M_z·\cos(\Alpha)}{\frac{I_z}{y_{Mindest}}}+\frac{M_z·\sin(\Alpha)}{\frac{Ich_y}{z_{Mindest}}}= frac{1000000·\cos(-0.1562^ Zirkel)}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562^ Zirkel)}{\frac{9.59281·10^4}{14.1016}}=-109.64\)
(0.00%) |
-109.6
(0.00%) |
|
Resultierende Scherung Y | max | 4.302 | \(\frac{ShearY·\cos(\Alpha)Qz}{Izp·t}+\frac{ShearZ·\cos(\Alpha)·Qy}{Iyp·t}= frac{1000·\cos(-0.1562^ Zirkel)·6533.7159}{{3.84955·10^5·3,9624}}+\frac{1000·\sin(-0.1562^ Zirkel)·4.2994}{9.59281·10^4·3,9624}=4.283\)
(0.44%) |
4.297
(0.12%) |
Resultierende Scherung Z | max | 16.629 | \(\frac{ShearZ·\sin(\Alpha)Qz}{Izp·t}+\frac{ShearZ·\cos(\Alpha)·Qy}{Iyp·t}= frac{1000·\sin(-0.1562^ Zirkel)·929.3201}{{3.84955·10^5·2,8145}}+\frac{1000·\cos(-0.1562^ Zirkel)·3337.6406}{9.59281·10^4·2,8145}=12.36\)
(25.67%) |
17.37
(4.46%) |
Drehung | max | 30.418 | \(\frac{r_{max}}{J.}= frac{0.1·1000000·4,6293}{1513.65} = 30.584\)
(0.55%) |
31.98
(5.14%) |