SkyCiv-Dokumentation

Ihr Leitfaden zur SkyCiv-Software - Tutorials, Anleitungen und technische Artikel

SkyCiv-Grundplattendesign

  1. Zuhause
  2. SkyCiv-Grundplattendesign
  3. Beispiele für die Basisplatte für axiale Spannungen
  4. Beispiel für Grundplatten Design (AS)

Beispiel für Grundplatten Design (AS)

Base Plate Design Example using AS 4100:2020, AS 3600:2018, AS 5216:2021

 

Problemanweisung:

Determine whether the designed column-to-base plate connection is sufficient for a 50-kN tension load.

Gegebene Daten:

Spalte:

Spaltenabschnitt: 250x150x8 RHS
Säulenbereich: 5920 mm2
Säulenmaterial: AS / NZS 1163 Gr. C350

Grundplatte:

Grundplattenabmessungen: 350 mmx 350 mm
Grundplattendicke: 20 mm
Grundplattenmaterial: AS / NZS 1163 Gr. C250

Grout:

Grout thickness: 20 mm

Beton:

Konkrete Abmessungen: 450 mmx 450 mm
Betondicke: 400 mm
Betonmaterial: N28
Cracked or Uncracked: Cracked

Anchors:

Anchor diameter: 16 mm
Effective embedment length: 250.0 mm
Embedded plate width: 70 mm
Embedded plate thickness: 10 mm
Anchor offset distance from face of column: 62.5 mm

Schweißnähte:

Weld type: Fillet
Weld category: SP
Füllmetallklassifizierung: E43XX

Anchor Data (von SkyCiv Calculator):

Definitions:

Load Path:

When a base plate is subjected to uplift (zugfest) Kräfte, these forces are transferred to the anchor rods, which in turn induce bending moments in the base plate. The bending action can be visualized as cantilever bending occurring around the flanges or web of the column section, depending on where the anchors are positioned.

In dem SkyCiv Basisplatten-Design-Software, only anchors located within the anchor tension zone are considered effective in resisting uplift. This zone typically includes areas near the column flanges or web. For rectangular columns, the anchor tension zone refers to the area adjacent to the column walls. Anchors outside this zone do not contribute to tension resistance and are excluded from the uplift calculations.

To determine the effective area of the base plate that resists bending, ein 45-degree dispersion is assumed from the centerline of each anchor rod toward the column face. This dispersion defines the effective weld length and helps establish the effective bending width der Platte.

The assumption simplifies the base plate analysis by approximating how the uplift force spreads through the plate.

Anchor Groups:

Mit der SkyCiv Basisplatten-Design-Software includes an intuitive feature that identifies which anchors are part of an anchor group for evaluating Betonausbruch und concrete side-face blowout failures.

Ein anchor group consists of multiple anchors with similar effective embedment depths and spacing, and are close enough that their projected resistance areas overlap. When anchors are grouped, their capacities are combined to resist the total tension force applied to the group.

Anchors that do not meet the grouping criteria are treated as single anchors. In diesem Fall, only the tension force on the individual anchor is checked against its own effective resistance area.

Prying Increase Factor:

Mit der SkyCiv Basisplatten-Design-Software includes an option to apply a prying increase factor to account for additional tensile forces on the anchors due to prying action. This factor increases the load demand on the anchors during the anchor checks, providing a more conservative and realistic assessment where applicable. Standardmäßig, the prying increase factor is set to 1.0, meaning no additional prying load is applied unless specified by the user.

Schritt-für-Schritt-Berechnungen:

Prüfen #1: Berechnen Sie die Schweißkapazität

Anwenden seismischer Lasten, we need to calculate the load per anchor and the effective weld length per anchor. The effective weld length is determined by the shortest length from the 45° dispersion, constrained by the actual weld length and anchor spacing.

For this calculation, anchors are classified as either end anchors oder intermediate anchors. End anchors are located at the ends of a row or column of anchors, while intermediate anchors are positioned between them. The calculation method differs for each and depends on the column geometry. In diesem Beispiel, there are two anchors along the web, and both are classified as end anchors.

For end anchors, the effective weld length is limited by the available distance from the anchor centerline to the column corner radius. The 45° dispersion must not extend beyond this boundary.

\(
l_r = \frac{d_{col} – 2t_{col} – 2r_{col} – s_y (n_{ein,\Text{side}} – 1)}{2} = frac{250 \, \Text{mm} – 2 \mal 8 \, \Text{mm} – 2 \mal 12 \, \Text{mm} – 150 \, \Text{mm} \mal (2 – 1)}{2} = 30 \, \Text{mm}
\)

On the inner side, the effective length is limited by half the anchor spacing. The total effective weld length for the end anchor is the sum of the outer and inner lengths.

\(
l_{eff,Ende} = min links( Tun, 0.5 s_y \right) + \min \left( Tun, l_r \right)
\)

\(
l_{eff,Ende} = min links( 62.5 \, \Text{mm}, 0.5 \mal 150 \, \Text{mm} \richtig) + \min \left( 62.5 \, \Text{mm}, 30 \, \Text{mm} \richtig) = 92.5 \, \Text{mm}
\)

Für dieses Beispiel, the final effective weld length for the web anchor is taken as the effective length of the end anchor.

\(
l_{eff} = l_{eff,Ende} = 92.5 \, \Text{mm}
\)

Als nächstes, let’s calculate the load per anchor. For a given set of four (4) Anker, the load per anchor is:

\(
T_{u,Anker} = frac{N_x}{n_{ein,t}} = frac{50 \, \Text{kN}}{4} = 12.5 \, \Text{kN}
\)

Using the calculated effective weld length, we can now compute the required force per unit length acting on the weld.

\(
v^*_w = \frac{T_{u,Anker}}{l_{eff}} = frac{12.5 \, \Text{kN}}{92.5 \, \Text{mm}} = 0.13514 \, \Text{kN / mm}
\)

Jetzt, wir werden verwenden AS 4100:2020 Klausel 9.6.3.10 to calculate the design strength of the fillet weld.

\(
\phi v_w = \phi 0.6 f_{Ihre} E_w k_r = 0.8 \mal 0.6 \mal 430 \, \Text{MPa} \mal 5.657 \, \Text{mm} \mal 1 = 1.1676 \, \Text{kN / mm}
\)

In addition to checking the weld, we also need to verify the resistance of the base metal against the applied tension force to ensure it does not govern the failure mode.

\(
\phi v_{wbm} = \phi \left( \min \left( F_{und _col} t_{col}, f_{und _bp} t_{bp} \richtig) \richtig)
\)

\(
\phi v_{wbm} = 0.9 \mal links( \min \left( 350 \, \Text{MPa} \mal 8 \, \Text{mm}, 250 \, \Text{MPa} \mal 20 \, \Text{mm} \richtig) \richtig) = 2.52 \, \Text{kN / mm}
\)

In diesem Fall, the weld resistance governs over the base metal resistance.

Schon seit 0.13514 kN / mm < 1.1676 kN / mm, Die Schweißkapazität ist ausreichend.

Prüfen #2: Calculate base plate flexural yielding capacity due to tension load

Verwendung der load per anchor and the offset distance from the center of the anchor to the face of the column (serving as the load eccentricity), the moment applied to the base plate can be calculated using a Ausleger assumption.

\(
M^* = T_{u,Anker} e = 12.5 \, \Text{kN} \mal 62.5 \, \Text{mm} = 781.25 \, \Text{kN} \cdot \text{mm}
\)

Als nächstes, using the calculated effective weld length from the previous check as the bending width, we can calculate the SkyCiv Foundation ist ein Designmodul für die Gestaltung von Spreizfundamenten aus den Überbaulasten of the base plate using AISC 360-22, Gleichung 2-1:

\(
\phi M_s = \phi Z_{eff} f_{und _bp} = 0.9 \mal 9250 \, \Text{mm}^3 \times 250 \, \Text{MPa} = 2081.2 \, \Text{kN} \cdot \text{mm}
\)

Wo,

\(
Z_{eff} = frac{l_{eff} (t_{bp})^ 2}{4} = frac{92.5 \, \Text{mm} \mal (20 \, \Text{mm})^ 2}{4} = 9250 \, \Text{mm}^ 3
\)

Schon seit 781.25 kN-mm < 2081.2 kN-mm, the base plate flexural yielding capacity is ausreichend.

Prüfen #3: Calculate anchor rod tensile capacity

To evaluate the tensile capacity of the anchor rod, we refer to AS 5216:2021 Klausel 6.2.2 und AS 4100:2020 Klausel 9.2.2.2.

Zuerst, Wir bestimmen die Zugspannungsbereich of the threaded portion of the rod, folgende AS 4100:2020 Klausel 7.2 und AS 1275–1985 Clause 1.7.

\(
A_n = \frac{\Pi}{4} \links( \frac{d_a}{\Text{mm}} – 0.9382 P \right)^ 2 \, \Text{mm}^2 = \frac{\Pi}{4} \mal links( \frac{16 \, \Text{mm}}{1 \, \Text{mm}} – 0.9382 \mal 2 \richtig)^2 \times 1 \, \Text{mm}^2 = 156.67 \, \Text{mm}^ 2
\)

Verwenden von AS 4100:2020 Klausel 9.2.2, wir berechnen die nominal tension capacity of the bolt based on the tensile stress area and the material strength.

\(
N_{tf} = A_n F_{u\_anc} = 156.67 \, \Text{mm}^2 \times 800 \, \Text{MPa} = 125.33 \, \Text{kN}
\)

We then apply the appropriate resistance factor to obtain the design anchor capacity in tension.

\(
\phi N_{Rk,s} = \phi N_{tf} = 0.8 \mal 125.33 \, \Text{kN} = 100.27 \, \Text{kN}
\)

Recall the previously calculated tension load per anchor, and apply the prying increase factor if specified.

\(
N^* = p \left( \frac{N_x}{n_{ein,t}} \richtig) = 1 \mal links( \frac{50 \, \Text{kN}}{4} \richtig) = 12.5 \, \Text{kN}
\)

Schon seit 12.5 kN < 100.27 kN, bleibt die anchor rod tensile capacity is sufficient.

Prüfen #4: Calculate concrete breakout capacity in tension

Before calculating the breakout capacity, we must first determine whether the member qualifies as a narrow member. Gemäß AS 5216:2021 Klausel 6.2.3.8, the member meets the criteria for a narrow member. Deshalb, ein modified effective embedment length must be used in the breakout capacity calculations. This adjustment also affects the characteristic spacing und characteristic edge distance, which must be modified accordingly.

Based on the narrow member criteria, bleibt die modified values for the anchor group are as follows:

  • modified effective embedment length, \(h’_{ef} = 100 \, \Text{mm}\)
  • modified characteristic spacing, \(s’_{Einstellungen für Biege-Torsionsknicken} = 300 \, \Text{mm}\)
  • modified characteristic edge distance, \(c’_{Einstellungen für Biege-Torsionsknicken} = 150 \, \Text{mm}\)

Verwenden von AS 5216: 2021 Klausel 6.2.3.3, wir berechnen die reference projected concrete cone area für einen einzelnen Anker.

\(
A0_{c,N.} = left( s’_{Einstellungen für Biege-Torsionsknicken,g1} \richtig)^2 = \left( 300 \, \Text{mm} \richtig)^2 = 90000 \, \Text{mm}^ 2
\)

Ähnlich, wir berechnen die actual projected concrete cone area of the anchor group.

\(
EIN_{Nc} = L_{Nc} B_{Nc} = 450 \, \Text{mm} \mal 450 \, \Text{mm} = 202500 \, \Text{mm}^ 2
\)

Wo,

\(
L_{Nc} = min links( c_{links,g1}, c’_{Einstellungen für Biege-Torsionsknicken,g1} + r_{embed\_plate} \richtig) + \min \left( s_{Summe,mit,g1}, s’_{Einstellungen für Biege-Torsionsknicken,g1} \cdot \left( n_{mit,g1} – 1 \richtig) \richtig) + \min \left( c_{richtig,g1}, c’_{Einstellungen für Biege-Torsionsknicken,g1} + r_{embed\_plate} \richtig)
\)

\(
L_{Nc} = min links( 87.5 \, \Text{mm}, 150 \, \Text{mm} + 18 \, \Text{mm} \richtig) + \min \left( 275 \, \Text{mm}, 300 \, \Text{mm} \Unterbau Erde (2 – 1) \richtig) + \min \left( 87.5 \, \Text{mm}, 150 \, \Text{mm} + 18 \, \Text{mm} \richtig)
\)

\(
L_{Nc} = 450 \, \Text{mm}
\)

\(
B_{Nc} = min links( c_{oben,g1}, c’_{Einstellungen für Biege-Torsionsknicken,g1} + r_{embed\_plate} \richtig) + \min \left( s_{Summe,j,g1}, s’_{Einstellungen für Biege-Torsionsknicken,g1} \cdot \left( n_{j,g1} – 1 \richtig) \richtig) + \min \left( c_{Unterseite,g1}, c’_{Einstellungen für Biege-Torsionsknicken,g1} + r_{embed\_plate} \richtig)
\)

\(
B_{Nc} =\min \left( 150 \, \Text{mm}, 150 \, \Text{mm} + 18 \, \Text{mm} \richtig) + \min \left( 150 \, \Text{mm}, 300 \, \Text{mm} \Unterbau Erde (2 – 1) \richtig) + \min \left( 150 \, \Text{mm}, 150 \, \Text{mm} + 18 \, \Text{mm} \richtig)
\)

\(
B_{Nc} = 450 \, \Text{mm}
\)

Mit der embedded plate effective radius is used to provide additional capacity for concrete breakout. To determine this, add the thickness of the embedded plate to half of the anchor diameter.

Als nächstes, we evaluate the characteristic strength of a single anchor using AS 5216:2021 Gl. 6.2.3.2

\(
N0_{Rk,c} = k_1 \sqrt{\frac{f’_c}{\Text{MPa}}} \links( \frac{h’_{ef,g1}}{\Text{mm}} \richtig)^{1.5} \, \Text{N.}
\)

\(
N0_{Rk,c} = 8.9 \mal sqrt{\frac{28 \, \Text{MPa}}{1 \, \Text{MPa}}} \mal links( \frac{100 \, \Text{mm}}{1 \, \Text{mm}} \richtig)^{1.5} \mal 0.001 \, \Text{kN} = 47.094 \, \Text{kN}
\)

Wo,

  • \(k_{1} = 8.9\) für einbetonierte Anker

Jetzt, we assess the effects of geometry by calculating the necessary Parameter for breakout resistance.

The shortest edge distance of the anchor group is determined as:

\(
c_{Min.,N.} = min links( c_{links,g1}, c_{richtig,g1}, c_{oben,g1}, c_{Unterseite,g1} \richtig) = min links( 87.5 \, \Text{mm}, 87.5 \, \Text{mm}, 150 \, \Text{mm}, 150 \, \Text{mm} \richtig) = 87.5 \, \Text{mm}
\)

Gemäß AS 5216:2021 Gl. 6.2.3.4, the value for the parameter accounting for distribution of stress in concrete is:

\(
\Psi_{s,N.} = min links( 0.7 + 0.3 \links( \frac{c_{Min.,N.}}{c’_{Einstellungen für Biege-Torsionsknicken,g1}} \richtig), 1.0 \richtig) = min links( 0.7 + 0.3 \mal links( \frac{87.5 \, \Text{mm}}{150 \, \Text{mm}} \richtig), 1 \richtig) = 0.875
\)

Mit der shell spalling effect is accounted for using AS 5216:2021 Gleichung 6.2.3.5, giving:

\(
\Psi_{Ausbruchkegelbereich für Einzeldübel nicht durch Kanten beeinflusst,N.} = min links( 0.5 + \frac{h’_{ef,g1}}{\Text{mm} \Unterbau Erde 200}, 1.0 \richtig) = min links( 0.5 + \frac{100 \, \Text{mm}}{1 \, \Text{mm} \Unterbau Erde 200}, 1 \richtig) = 1
\)

Zusätzlich, both the eccentricity factor und das compression influence factor are taken as:

\(
\Psi_{ec,N.} = 1
\)

\(
\Psi_{M.,N.} = 1
\)

We then combine all these factors and apply AS 5216:2021 Gleichung 6.2.3.1 to evaluate the design concrete cone breakout resistance for the anchor group:

\(
\phi N_{Rk,c} = phi_{Mc} N0_{Rk,c} \links( \frac{EIN_{Nc}}{A0_{c,N.}} \richtig) \Psi_{s,N.} \Psi_{Ausbruchkegelbereich für Einzeldübel nicht durch Kanten beeinflusst,N.} \Psi_{ec,N.} \Psi_{M.,N.}
\)

\(
\phi N_{Rk,c} = 0.6667 \mal 47.094 \, \Text{kN} \mal links( \frac{202500 \, \Text{mm}^ 2}{90000 \, \Text{mm}^ 2} \richtig) \mal 0.875 \mal 1 \mal 1 \mal 1 = 61.814 \, \Text{kN}
\)

Mit der total applied tension load on the anchor group is calculated by multiplying the tension load per anchor by the number of anchors, with the prying increase factor applied as needed:

\(
N^* = p \left( \frac{N_x}{n_{ein,t}} \richtig) n_{ein,g1} = 1 \mal links( \frac{50 \, \Text{kN}}{4} \richtig) \mal 4 = 50 \, \Text{kN}
\)

Schon seit 50 kN < 61.814 kN the concrete breakout capacity is ausreichend.

Prüfen #5: Calculate anchor pullout capacity

Mit der pullout capacity of an anchor is governed by the resistance at its embedded end. Zuerst, we compute the maximum anchor head dimension effective for pull out resistance, gemäß AS 5216:2021 Klausel 6.3.4.

\(
d_{h,\Text{max}} = min links( = Abstand des Abschnitts, in dem die Scherung berücksichtigt wird, zur Fläche des nächsten Auflagers{embed\_plate}, 6 \links( t_{embed\_plate} \richtig) + d_a \right) = min links( 70 \, \Text{mm}, 6 \mal (10 \, \Text{mm}) + 16 \, \Text{mm} \richtig) = 70 \, \Text{mm}
\)

Als nächstes, we calculate the net bearing area of the rectangular embedded plate using:

\(
A_h = \left( d_{h,\Text{max}}^2 \right) – EIN_{Stange} = left( (70 \, \Text{mm})^2 \right) – 201.06 \, \Text{mm}^2 = 4698.9 \, \Text{mm}^ 2
\)

Wo,

\(
EIN_{Stange} = frac{\Pi}{4} (d_a)^2 = \frac{\Pi}{4} \mal (16 \, \Text{mm})^2 = 201.06 \, \Text{mm}^ 2
\)

We then calculate the design basic anchor pullout strength mit AS 5216:2021 Klausel 6.3.4:

\(
N_{Rk,p} = phi_{Mc} k_2 A_h \left( f’_c \right) = 0.6667 \mal 7.5 \mal 4698.9 \, \Text{mm}^2 \times (28 \, \Text{MPa}) = 657.88 \, \Text{kN}
\)

Recall the previously calculated tension load per anchor:

\(
N^* = p \left( \frac{N_x}{n_{ein,t}} \richtig) = 1 \mal links( \frac{50 \, \Text{kN}}{4} \richtig) = 12.5 \, \Text{kN}
\)

Schon seit 12.5 kN < 657.88 kN, the anchor pullout capacity is ausreichend.

Prüfen #6: Calculate side-face blowout capacity in Y-direction

Let’s consider Side-Face Blowout Anchor Group 1 for the capacity calculation. Referring to the Anchor Data Summary, Anchor IDs 3 und 4 are part of SFy Group 1.

We begin by calculating the edge distance to the failure edge.

\(
c_{mit,\Text{Min.}} = min links( c_{\Text{links},g1}, c_{\Text{richtig},g1} \richtig) = min links( 87.5 \, \Text{mm}, 362.5 \, \Text{mm} \richtig) = 87.5 \, \Text{mm}
\)

Als nächstes, we determine the edge distance to the orthogonal edge.

\(
c_{j,\Text{Min.}} = min links( c_{\Text{oben},g1}, c_{\Text{Unterseite},g1} \richtig) = min links( 150 \, \Text{mm}, 150 \, \Text{mm} \richtig) = 150 \, \Text{mm}
\)

Verwenden von AS 5216:2021 Klausel 6.2.7.3, let’s calculate the reference projected area of a single fastener.

\(
A0_{c,Nb} = left( 4 c_{mit,\Text{Min.}} \richtig)^2 = \left( 4 \mal 87.5 \, \Text{mm} \richtig)^2 = 122500 \, \Text{mm}^ 2
\)

Since we are checking the capacity of the anchor group, let’s get the actual projected area of the anchor group using AS 5216:2021 Klausel 6.2.7.2.

\(
EIN_{Nc} = B_{c,Nb} Um es zu berechnen{c,Nb} = 450 \, \Text{mm} \mal 325 \, \Text{mm} = 146250 \, \Text{mm}^ 2
\)

Wo,

\(
B_{c,Nb} = min links( 2 c_{mit,\Text{Min.}}, c_{\Text{oben},g1} \richtig) + s_{\Text{Summe},j,g1} + \min \left( 2 c_{mit,\Text{Min.}}, c_{\Text{Unterseite},g1} \richtig)
\)

\(
B_{c,Nb} = min links( 2 \mal 87.5 \, \Text{mm}, 150 \, \Text{mm} \richtig) + 150 \, \Text{mm} + \min \left( 2 \mal 87.5 \, \Text{mm}, 150 \, \Text{mm} \richtig) = 450 \, \Text{mm}
\)

\(
Um es zu berechnen{c,Nb} = 2 c_{mit,\Text{Min.}} + \links( \min \left( t_{\Text{conc}} – h_{\Text{ef}}, 2 c_{mit,\Text{Min.}} \richtig) \richtig)
\)

\(
Um es zu berechnen{c,Nb} = 2 \mal 87.5 \, \Text{mm} + \links( \min \left( 400 \, \Text{mm} – 250 \, \Text{mm}, 2 \mal 87.5 \, \Text{mm} \richtig) \richtig) = 325 \, \Text{mm}
\)

In computing the characteristic concrete blow-out strength of an individual anchor, wir werden verwenden AS 5216:2021 Klausel 6.2.7.2.

\(
N0_{Rk,cb} = k_5 \left( \frac{c_{mit,\Text{Min.}}}{\Text{mm}} \richtig) \sqrt{\frac{A_h}{\Text{mm}^ 2}} \sqrt{\frac{f’_c}{\Text{MPa}}} \, N.
\)

\(
N0_{Rk,cb} = 8.7 \mal links( \frac{87.5 \, \Text{mm}}{1 \, \Text{mm}} \richtig) \mal sqrt{\frac{4698.9 \, \Text{mm}^ 2}{1 \, \Text{mm}^ 2}} \mal sqrt{\frac{28 \, \Text{MPa}}{1 \, \Text{MPa}}} \mal 0.001 \, \Text{kN}
\)

\(
N0_{Rk,cb} = 276.13 \, \Text{kN}
\)

Wo,

  • \(k_{5} = 8.7\) für gerissenen Beton
  • \(k_{5} = 12.2\) for uncracked concrete

Dann, we will get the side-face blowout parameters.

The parameter accounting for the disturbance of the distribution of stresses in concrete can be calculated from AS 5216:2021 Klausel 6.2.7.4.

\(
\Psi_{s,Nb} = min links( 0.7 + 0.3 \links( \frac{c_{j,\Text{Min.}}}{2 c_{mit,\Text{Min.}}} \richtig), 1.0 \richtig)
\)

\(
\Psi_{s,Nb} = min links( 0.7 + 0.3 \mal links( \frac{150 \, \Text{mm}}{2 \mal 87.5 \, \Text{mm}} \richtig), 1 \richtig) = 0.95714
\)

The equation from AS 5216:2021 Klausel 6.2.7.5 is then used to get the parameter accounting for the group effect.

\(
\Psi_{G,Nb} = max links( \sqrt{n_{j,g1}} + \links( 1 – \sqrt{n_{j,g1}} \richtig) \links( \frac{\min \left( s_{j,g1}, 4 c_{mit,\Text{Min.}} \richtig)}{4 c_{mit,\Text{Min.}}} \richtig), 1.0 \richtig)
\)

\(
\Psi_{G,Nb} = max links( \sqrt{2} + \links( 1 – \sqrt{2} \richtig) \mal links( \frac{\min \left( 150 \, \Text{mm}, 4 \mal 87.5 \, \Text{mm} \richtig)}{4 \mal 87.5 \, \Text{mm}} \richtig), 1 \richtig)
\)

\(
\Psi_{G,Nb} = 1.2367
\)

Schließlich, in reference to AS 5216:2021 Gl. 6.2.7 for headed anchor rods, bleibt die design concrete blow-out resistance ist:

\(
\phi N_{Rk,cb} = \phi_M N0_{Rk,cb} \links( \frac{EIN_{Nc}}{A0_{c,Nb}} \richtig) \Psi_{s,Nb} \Psi_{G,Nb} \Psi_{ec,N.}
\)

\(
\phi N_{Rk,cb} = 0.6667 \mal 276.13 \, \Text{kN} \mal links( \frac{146250 \, \Text{mm}^ 2}{122500 \, \Text{mm}^ 2} \richtig) \mal 0.95714 \mal 1.2367 \mal 1 = 260.16 \, \Text{kN}
\)

For this anchor group, only two (2) anchors belong to group. Deshalb, bleibt die design tension force for the anchor group is:

\(
N^* = p \left( \frac{N_x}{n_{ein,t}} \richtig) n_{j,g1}
\)

\(
N^* = 1 \mal links( \frac{50 \, \Text{kN}}{4} \richtig) \mal 2 = 25 \, \Text{kN}
\)

Schon seit 25 kN < 260.16 kN, the concrete side-face blowout along Y-direction is ausreichend.

Side-Face Blowout Anchor Group 2 can also be used and will yield the same result, since the design is symmetric.

Prüfen #7: Calculate side-face blowout capacity in Z-direction

This calculation is not applicable for failure along the Z-direction, as the edge distance to the sides exceeds half of the effective embedment length.

Entwurfszusammenfassung

Mit der Skyciv Base Plate Design Software can automatically generate a step-by-step calculation report for this design example. Es enthält auch eine Zusammenfassung der durchgeführten Schecks und deren resultierenden Verhältnisse, Die Informationen auf einen Blick leicht zu verstehen machen. Im Folgenden finden Sie eine Stichprobenzusammenfassungstabelle, Welches ist im Bericht enthalten.

SKYCIV -Beispielbericht

Klicke hier to download a sample report.

Basisplattensoftware kaufen

Kaufen Sie die Vollversion des Basisplatten -Designmoduls selbst ohne andere Skyciv -Module selbst. Auf diese Weise erhalten Sie einen vollständigen Satz von Ergebnissen für die Basisplattendesign, Einbeziehung detaillierter Berichte und mehr Funktionen.

War dieser Artikel für Sie hilfreich??
Ja Nein

Wie können wir helfen?

Zur Spitze gehen