Voorbeeld 1
Bepaal de spanningen van een T-profiel onderworpen aan gecombineerde krachten.
Vergelijking van resultaten
Resultaat | Plaats | SkyCiv SB-analyse | Handleiding | Derde partij |
Primaire spanningen (MPa) | ||||
Axiaal | max | 2.794 | \(\frac{Oppervlakte}{Axiaal}= frac{10·1000}{3579} = 2.794\)
(0.00%) |
2.794
(0.00%) |
min | 2.794 | \(\frac{Oppervlakte}{Axiaal}= frac{10·1000}{3579} = 2.794\)
(0.00%) |
2.794
(0.00%) |
|
Y . buigen | max | 14.234 | \(\frac{Y . buigen}{ik_j/j_{max}}= frac{1·1000000}{6.32306·10^6/90} =14.234\)
(0.00%) |
14.234
(0.00%) |
min | -14.234 | \(\frac{Y . buigen}{ik_j/j_{min}}= frac{1·1000000}{6.32306·10^6/-90} =-14.234\)
(0.00%) |
-14.234
(0.00%) |
|
Z buigen | max | 3.723 | \(\frac{Z buigen}{ik_z/z_{max}}= frac{1·1000000}{1.05786·10^7/39,3877} =3,723)
(0.00%) |
3.723
(0.00%) |
min | -14.237 | \(\frac{Z buigen}{ik_z/z_{min}}= frac{1·1000000}{1.05786·10^7/-150,6123} =-14.237\)
(0.00%) |
-14.237
(0.00%) |
|
Resulterende afschuiving Y | max | 1.123 | \(\frac{Afschuiving Y·Q_z}{ik_z·t}= frac{1·1000·7,93943·10^4}{1.05786·10^7·7} = 1.072\)
(4.54%) |
1.120
(0.26%) |
Resulterende afschuiving Z | max | 0.698 | \(\frac{Afschuiving Z·Q_y}{ik_j·t}= frac{1·1000·5,25658·10^4}{6.32306·10^6·13} = 0.639\)
(8.45%) |
0.709
(1.57%) |
Torsie | max | 9.956 | \(\frac{R_{max}}{J}= frac{0.1·1000000·13.5357}{1.46870·10^5} = 9.216\)
(7.43%) |
9.570
(3.87%) |
Voorbeeld 2
Bepaal de spanningen van een sectie die wordt blootgesteld aan gecombineerde krachten.
Vergelijking van resultaten
Resultaat | Plaats | SkyCiv SB-analyse | Handleiding | Derde partij |
Primaire spanningen (MPa) | ||||
Axiaal | max | 18.729 | \(\frac{Oppervlakte}{Axiaal}= frac{10·1000}{533.9368} = 18.729\)
(0.00%) |
18.73
(0.00%) |
min | 18.729 | \(\frac{Oppervlakte}{Axiaal}= frac{10·1000}{533.9368} = 18.729\)
(0.00%) |
18.793
(0.00%) |
|
Y . buigen | max | 166.538 | \(\frac{M_y·\cos(\alfa)}{\frac{Ik_j}{z_{max}}}+\frac{M_y·\sin(\alfa)}{\frac{I_z}{j_{max}}}= frac{1000000·\cos(-0.1562^ circ)}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562^ circ)}{\frac{9.59281·10^4}{14.1016}}=166.694\)
(0.00%) |
166.5
(0.00%) |
min | -165.951 | \(\frac{M_y·\cos(\alfa)}{\frac{Ik_j}{z_{min}}}+\frac{M_y·\sin(\alfa)}{\frac{I_z}{j_{min}}}= frac{1000000·\cos(-0.1562^ circ)}{\frac{3.84955·10^5}{30.7351}}+\frac{1000000·\sin(-0.1562^ circ)}{\frac{9.59281·10^4}{-15.9392}}=166.045\)
(0.00%) |
-166.0
(0.00%) |
|
Z buigen | max | 97.189 | \(\frac{M_z·\cos(\alfa)}{\frac{I_z}{j_{max}}}+\frac{M_z·\sin(\alfa)}{\frac{Ik_j}{z_{max}}}= frac{1000000·\cos(-0.1562^ circ)}{\frac{3.84955·10^5}{37.2424}}+\frac{1000000·\sin(-0.1562^ circ)}{\frac{9.59281·10^4}{-15.7027}}=97.19\)
(0.00%) |
97.19
(0.00%) |
min | -109.639 | \(\frac{M_z·\cos(\alfa)}{\frac{I_z}{j_{min}}}+\frac{M_z·\sin(\alfa)}{\frac{Ik_j}{z_{min}}}= frac{1000000·\cos(-0.1562^ circ)}{\frac{3.84955·10^5}{-42.0526}}+\frac{1000000·\sin(-0.1562^ circ)}{\frac{9.59281·10^4}{14.1016}}=-109.64\)
(0.00%) |
-109.6
(0.00%) |
|
Resulterende afschuiving Y | max | 4.302 | \(\frac{ShearY·\cos(\alfa)Qz}{Izp·t}+\frac{ShearZ·\cos(\alfa)·Qj}{Iyp·t}= frac{1000·\cos(-0.1562^ circ)·6533.7159}{{3.84955·10^5·3,9624}}+\frac{1000·\sin(-0.1562^ circ)·4,2994}{9.59281·10^4·3,9624}=4.283\)
(0.44%) |
4.297
(0.12%) |
Resulterende afschuiving Z | max | 16.629 | \(\frac{ShearZ·\sin(\alfa)Qz}{Izp·t}+\frac{ShearZ·\cos(\alfa)·Qj}{Iyp·t}= frac{1000·\sin(-0.1562^ circ)·929.3201}{{3.84955·10^5·2,8145}}+\frac{1000·\cos(-0.1562^ circ)·3337.6406}{9.59281·10^4·2,8145}=12.36\)
(25.67%) |
17.37
(4.46%) |
Torsie | max | 30.418 | \(\frac{R_{max}}{J}= frac{0.1·1000000·4,6293}{1513.65} = 30.584\)
(0.55%) |
31.98
(5.14%) |