SkyCiv-documentatie

Uw gids voor SkyCiv-software - tutorials, handleidingen en technische artikelen

TechNotes

  1. Huis
  2. TechNotes
  3. Structurele 3D
  4. Reactiespectrumanalyse: Borden

Reactiespectrumanalyse: Borden

Algemene beschrijving

SkyCiv has included a new powerful feature consisting of the plate response spectrum analysis in the platform. In dit artikel, we will cover an example of a small building, as the following image shows. The primary purpose is to explain some essential details when executing a similar analysis by yourself.

Reactiespectrumanalyse - Borden

Figuur 1. Voorbeeld klein gebouw

You can see that the small reinforced concrete structure has walls and slabs built using the SkyCiv plate element. When designing the building for dynamic loads such as earthquakes, most construction codes establish some methods such as the ‘Response Spectrum Procedure or Analysis (RSA).’

The RSA consists of taking the seismic design level acceleration through a smooth curve given by the code. You can read these SkyCiv articles: Reactiespectrumanalyse: A Building Example and Response Spectrum Analysis: Modal Combination Methods for more information and examples Reactiespectrumanalyse: Building Examples en Reactiespectrumanalyse: Modale combinatiemethoden.

Als je nieuw bent bij SkyCiv, Meld u aan en test de software zelf!

Finite Element Model: Plates Dynamic Analysis

Once the geometry and materials for the example have been defined, the next crucial step is to run a linear analysis of a meshed structure. Please take a look at the model in Figure 2.

Reactiespectrumanalyse

Figuur 2. Gemaasd klein gebouw

The motion equation to solve when running a response spectrum analysis has the shape of:

\({M_e}{\punt{X_e}}+{C_e}{\punt{X_e}}+{K_e}{X_e}={-\punt{X_0}{(t)}{M_e}{J}}\)

Waar:

  • \({M_e}\) is the consistent matrix for masses.
  • \({C_e}\) is the damping matrix (Vaak, this value could be calculated as the linear combination of stiffness and masses matrices \({C_e}={\alfa}{K_e}+{\bèta}{M}\) ).
  • \({K_e}\) is de stijfheidsmatrix.
  • \({X_e}\) is the displacement vector relative to the structure’s base.
  • \({X_0}{(t)}\) is the soil displacement vector (It has all degrees of freedom: 3 displacements and three rotations).
  • \({J}\) is a vector with unitary components.

Due SkyCiv using the Finite Element Method for Plates, the matrix \({M_e}\) could be obtained through the following expression for Kinetic Energy:

\({E_c}={\frac{1}{2}}{\int_{vol} {\rho}{\punt{X}^ 2}{dw}vol}\) .

We now write the \(x\) displacement as a function of its nodes and use some interpolation expressions (\(N_{X}^{T}\)).

\({X}=N_{X}^{T} {X}\). If we plug this value into the energy equation, we krijgen:

\({E_c}={\frac{1}{2}}{\punt{X}^{T}}\{{\int_{vol}{\rho}{N}{N^T}{d}{vol}}\} \punt{X} \)

Zo, we can say that:

\( M = {\int_{vol}{\rho}{N}{N^T}{d}{vol}}\)

Defining the above matrix lets us run a modal analysis, which is required for the dynamic analysis. Figuur 3 helps us with some recommended inputs.

Reactiespectrumanalyse

Figuur 3. Maximale beschouwde modi verhoogd tot 40

Increasing the total number of modes is recommended until strictly fulfilling codes. This will affect the total mass participation factors, which have to reach a value of 90%.

Spectrale belastingen

The next step is to define the spectral loads. We can include a custom function or take the cases previously built by the SkyCiv platform. This example uses for each building plan main direction an ASCE plot. Check the inputs in Figure 4 en figuur 5.

Reactiespectrumanalyse

Figuur 4. Instellingen voor RSA, part one

Reactiespectrumanalyse

Figuur 5. Instellingen voor RSA, part two

Als je nieuw bent bij SkyCiv, Meld u aan en test de software zelf!

Results analysis and conclusions

Reactiespectrumanalyse

Figuur 6. Modes and Mass Participation Summary, part one

Reactiespectrumanalyse

Figuur 7. Modes and Mass Participation Summary, part one

Figuren 6 en 7 give the modes and mass participation values. These tables define the principal modes in each plan direction corresponding to those with the highest mass participation values.

Modus 24, T = 0.029 seconden, massale deelname = 44.80 % ‘x direction’:

Reactiespectrumanalyse - Borden

Figuur 8. Main modal mode for X direction.

Modus 23, T = 0.030 seconden, massale deelname = 41.80 % ‘z direction’:

Reactiespectrumanalyse - Borden

Figuur 9. Main modal mode for Z direction.

SkyCiv also gives the displacements, krachten, benadrukt, and so on when running the RSA. The following images help us to understand how the buildings behave.

Reactiespectrumanalyse - Borden

Figuur 10. Displacements in X direction for RSA load case.

Reactiespectrumanalyse - Borden

Figuur 11. Displacement in the Z direction for RSA load case.

You can now design the plate elements with those results. We suggest you read the SkyCiv articles about Plate Design: Plaatontwerpmodule and applied code-based slabs examples in the following links: ACI, AS-3600 en Eurocode 2.

Ook, with SkyCiv, we can get the base reactions for the foundation design.

Reactiespectrumanalyse - Borden

Figuur 12. Base reactions for RSA load case.

Just be aware of the results signs! All of them came in positive or absolute values. This is because we get the maximum absolute values for each design component when using an RSA method.

Als je nieuw bent bij SkyCiv, Meld u aan en test de software zelf!

Was dit artikel nuttig voor jou?
Ja Nee

Hoe kunnen we helpen?

Ga naar boven