SkyCiv-documentatie

Uw gids voor SkyCiv-software - tutorials, handleidingen en technische artikelen

SkyCiv Load Generator

  1. Huis
  2. SkyCiv Load Generator
  3. Windbelastingen
  4. Hoe u de terreincategorie kunt bepalen voor berekeningen van windbelasting

Hoe u de terreincategorie kunt bepalen voor berekeningen van windbelasting

In dit artikel, we will walk you through the how to determine the terrain or exposure categories of the upwind side the site location, which are essential for calculating wind loads. We will cover the specific procedures outlined in ASCE 7, NBCC 2015, en AS/NZS 1170.2 for determining the terrain categories and discuss how these apply to each reference code available in the SkyCiv Load Generator.

ASCE 7-16/ASCE 7-22

we zullen de effecten van topografie op windbelasting op constructies bespreken door de topografische factor te berekenen 7, the procedure to determine the Exposure Category of the upwind exposure of a site location is discussed in Section 26.7, depending on the terrain. In dit artikel, to simplify the reference, we shall be using ASCE 7-16. For each wind source direction, it should be analyzed from two upwind sectors extending ±45°.

Wind Direction sectors

Figuur 1. Terrain sectors for each wind source direction.

For each sector, the Surface Roughness category should be checked based on the following definition based on Section 26.7.2 van ASCE 7-16:

ASCE 7 Suface Roughness definition

Tafel 1. Surface Roughness definition based on Section 26.7.2 van ASCE 7-16.

From the definition of Surface Roughness, we can determine the Exposure Category of the terrain bounded by the upwind sector. The definition for each Exposure Category is stated in Section 26.7.3 van ASCE 7-16 als volgt:

ASCE 7 Exposure Category definition

Tafel 2. Exposure Category definition based on Section 26.7.3 van ASCE 7-16.

The Table 2 can be visualized thru the following figures based on Figure C26.7-2:

Exposure B diagram (SkyCiv)

Figuur 2. Upwind Surface Roughness conditions required For Exposure B.

Exposure D condition 1 - SkyCiv Load Generator

Figuur 3. Upwind Surface Roughness condition required For Exposure D – geval 1.

Exposure D condition 2 - SkyCiv Load Generator

Figuur 4. Upwind Surface Roughness condition required For Exposure D – geval 2.

The Exposure Category shall be determined for each wind source direction. Using an example site location – “1200 S DuSable Lake Shore Dr, Chicago, DE 60605, VS”, lets analyze this for each direction.

Example location for Exposure Category Analysis

Figuur 4. Sample location for Exposure Category analysis.

Assuming the mean roof height of the structure is 25 ft ( \( 20h = 500 ft \)), we will use the following procedure to check the Exposure Category for each sector:

Condition 1. Determine if Exposure D using Figure 3:

Using Figure 3 – where the distance \( d_{1} \) is 5000 ft (1524 m), we need to check for Exposure D, where Surface Roughness D is dominant for the whole 5000 ft stretch:

Drawn sectors for each wind source direction

Figuur 5. Offset distance of 5000 ft from site location for Exposure D check using Figure 3.

Van figuur 5, we can already conclude that wind source directions N, GEBOREN, en E have Surface Roughness D for the whole 5000 ft stretch. Daarom, these wind source directions are Blootstelling D.

Condition 2. Determine if Exposure D using Figure 2

Using Figure 4 – where the distance \( d_{1} \) is 5000 ft (1524 m) and distance \( d_{2} \) is gelijk aan 600 ft (183 m), we need to check for Exposure D. Van figuur 5, this can only be applied for wind source direction from SE:

Exposure category check using Figure 5

Figuur 6. Offset distance of 600ft and additional 5000 ft from site location for Exposure D check using Figure 4.

For wind source direction SE, gebruik makend van \( d_{2} = 600 ft \), we can consider that this section is Surface Roughness B. Echter, for distance \( d_{1} = 5000 ft \), the section is not 100% Surface Roughness D. Vandaar, SE should not be considered as Exposure D.

Condition 3. Determine if Exposure B using Figure 1

Using Figure 3 – where the distance \( d_{1} \) is 1500 ft (457 m) sinds \( h < 30 ft \), we need to check for Exposure B.

Distance offset for checking Exposure B

Figuur 7. Offset distance of 1500 ft from site location for Exposure B check using Figure 3.

Van figuur 7, we can determine that for wind source directions NW, W, SW, and S are classified as Exposure B as the surface roughness for each direction sector is Surface Roughness B.

Condition 4. If conditions 1 naar 3 are not true, daarom, the terrain is Exposure C.

Daarom, for wind source direction SE, it is classified as Exposure Category C. samengevat, the exposure categories for each wind source direction is shown in Figure 8 hieronder.

Classified exposure categories for all wind source directions

Figuur 8. The exposure categories for each wind source direction.

These data can be used to determine what will be the worst wind source direction as the Velocity Pressure Coefficients \( Hieronder volgen de verschillende manieren om de gronddrukcoëfficiënten te bepalen om de eenheidswrijvingsweerstand van palen in zand te berekenen{z} \), Topografische factor \( Hieronder volgen de verschillende manieren om de gronddrukcoëfficiënten te bepalen om de eenheidswrijvingsweerstand van palen in zand te berekenen{t} \), and Gust-effect Factor \( G \) using detailed calculation are affected by the Exposure Category.

NBCC 2015/2020

For NBCC 2015, the procedure to determine the Exposure Category of the upwind exposure of a site location is discussed in Section 4.1.7.3(5), depending on the terrain. For each wind source direction, it should be analyzed from two upwind sectors extending ±45°.

Offset distance of 50m and 1km for determining terrain category based on NBCC 2015

 

Figuur 9. Terrain sectors for each wind source direction.

For each sector, the terrain category should be checked based on the following definition based on Section 4.1.7.3(5) van NBCC 2015:

Terrain category definition in NBCC 2015

Tafel 3. Definition of terrain categories as defined in Section 4.1.7.3(5) van NBCC 2015.

Visualizing the options in Table 3:

Rough terrain as defined in NBCC 2015

Figuur 10. Definition of Rough Terrain as defined in Section 4.1.7.3(5) van NBCC 2015.

Open terrain as defined in NBCC 2015

Figuur 10. Definition of Open Terrain as defined in Section 4.1.7.3(5) van NBCC 2015.

Based on Section 4.1.7.3(5) van NBCC 2015, it is permitted to interpolate the Blootstellingsfactor \( C_{e} \) in intermediate terrain. If the rough terrain distance from the structure location is greater than or equal to 1km or 20 maal de hoogte van de constructie, welke groter is, het terrein kan worden beschouwd als Ruw terrein, en als de afstand kleiner is dan 50 m, het wordt beschouwd als Open terrein. Anders, the Exposure Factor \( C_{e} \) volgens Sectie 4.1.7.3(5) will be calculated from the boundary values. This can be visualized in Figure 11 hieronder.

Intermediate terrain based on NBCC 2015

Figuur 11. Definition of Intermediate Terrain as defined in Section 4.1.7.3(5) van NBCC 2015.

To further illustrate this, let’s use an example site location – “657 Masters Rd SE, Calgary, AB T3M 2B6, Canada,” assuming the structure height \( H. \) is 25 m ( \( 20H = 500 m \)).

Site location for our example terrain category analysis

Figuur 12. Sample location for Terrain Category analysis.

First step is to classify the obvious rough and open terrain categories for each wind source direction. We can draw 50m and max of 1 km or \( 20 H. \) radius from the site location.

Figuur 13. Offset distance of 50m and 1km for determining terrain category based on Table 1 definitions.

Van figuur 13, we can say that the wind source directions GEBOREN, E, en SE are classified as Open terrain as the rough terrain length for each direction is less than 50m from the site location. Bovendien, for wind source directions W and NW can be classified as Rough Terrain as the rough terrain length for these directions is greater than 1 km. For wind source direction N, we can conservatively assume that the Open Terrain is dominant in this direction. For the rest, S and SW, we can conclude that these are Intermediate Terrain and we will need to measure the distance of the rough terrain from the site location.

Distance measured from site location for SW direction

Figuur 14. Approximate rough terrain length measured from site location for SW wind source direction equal to 574 m.

Distance measured from site location for S direction

Figuur 15. Approximate rough terrain length measured from site location for S wind source direction equal to 249 m.

From the analysis above, definitely the wind source directions with Open Terrain will definitely yield the conservative values. Echter, if all wind source directions are classified to Intermediate Terrain, the procedure above is how you can determine the appropriate Terrain Category for each direction.

 

AS / NZS 1170.2 (2021)

Voor AS / NZS 1170.2, the same procedure with the above references applies in determining the Terrain Category of the upwind exposure of a site location. This is discussed in Section 4.2 van AS / NZS 1170.2 (2021). For each wind source direction, it should be analyzed from two upwind sectors extending ±45°. The definition of each terrain category are shown below based on Section 4.2.1 van AS / NZS 1170.2 (2021):

Terrain category definition based on AS/NZS 1170.2 (2021)

Tafel 4. Definition of terrain categories as defined in Section 4.2.1 van AS / NZS 1170.2 (2021).

In determining the terrain category for a direction, a lag distance equal to \( 20 z \) from the structure location shall be neglected. Vanaf dit punt, an offset distance (averaging distance) van 500 m of \( 40 z), whichever is larger, shall be used as shown in Figure 16 hieronder. De \( z \) value is equal to the average roof height, \( h \), when it is less than or equal to 25 m. It is possible that within this averaging distance to have multiple terrain categories, and as such, linear interpolation of shall be used in determining the \( M_{z,kat} \) waarden, depending on the length of each terrain category, zoals geïllustreerd in afbeelding 4.1 van AS / NZS 1170.2 (2021). In dit artikel, we shall only consider a homogeneous terrain category within the averaging distance.

Illustrated distances used for determining the terrain category of the upwind section of a location based on AS/NZS 1170.2

Figuur 16. Illustration of the distances used in determing Terrain Category based on AS/NZS 1170.2 (2021).

To further illustrate this, let’s use an example site locationLat: 32°43’46S Lng: 151°31’47″E – assuming the mean roof height \( h \) is 10 m ( waar \( 20z = 20h = 200 m \) en \( 40z = 400 m \)).

Sample location for determining terrain category using AS/NZS 1170.2 (2021)

Figuur 17. The site location with lag distance equal to 200 m and averaging distance equal to 500 m for each wind source direction.

Since we are only to consider the terrain category as homogeneous throughout the entire 500m or \( 40z \) afstand, we can already classify each wind source direction. Assuming the buildings on N, NE and E, are buildings that are 5 naar 10 m lang, we can classify these to Terrain Category 3 (TC3) zoals weergegeven in de tabel 4. For wind source directions SE, S, SW, and W, since these are grass plains without obstructions, we can classify these as Terrain Category 1 (TC1). Uiteindelijk, for wind source direction NW, we can deduce that there are more than two but less than 10 buildings per hectare, with scattered houses. Daarom, we can classify this as Terrain Category 2.5 (TC2.5).

Summary of Terrain Categories according AS/NZS 1170.2 (2021)

Figuur 18. Summary of terrain category classification for each wind source direction for our sample location.

SkyCiv Load Generator gebruiken

In SkyCiv Load Generator version v4.7.0, new map tools are introducedMeet afstand en Afstand stralen hulpmiddelen.

Afstandsmeetinstrumenten in SkyCiv Load Generator

Figuur 19. Afstandsmeetinstrumenten geïntroduceerd in SkyCiv Load Generator.

De Meet afstand tool wordt gebruikt om een ​​cirkel te genereren vanaf een aangeklikt punt op de kaart en de straal ervan in meters weer te geven. Op deze manier, u kunt de afstanden meten vanaf de locatie die wordt geanalyseerd tot bepaalde locaties. This can be used in measuring in NBCC 2015 voor de Bovenwinds Omvang van ruw terrein used in calculating Blootstellingsfactor \( C_{e} \). Clicking the circle generated will clear it from the map.

Meet afstandshulpmiddel in SkyCiv Load Generator

Figuur 20. Measure distance tool which creates an offset from the location and showing the radius/offset distance from the center introduced to SkyCiv Load Generator.

Anderzijds, de Afstand stralen wordt geïntroduceerd zodat gebruikers voor elke windbroncategorie cirkels kunnen tekenen met gespecificeerde afstanden vanaf de locatie. It is a toggle button to show or hide the distance radii on the map, with the site location as the center of the circles.

Afstandsradii-tool in SkyCiv Load Generator

Figuur 21. Distance Radii tool which specified offset distances from the site location introduced to SkyCiv Load Generator.

The radii values can be edited upon opening the Settings.

Instellingen in SkyCiv Load Generator

Figuur 22. Optie in instellingen om de afstanden voor de Distance Radii-tool in SkyCiv Load Generator te bewerken.

Take note that users must edit the distance values as these are not automatically calculated by the software. Using this for ASCE 7 en NBCC, the worst exposure or terrain category for each wind source direction shall be adopted. With regard to using it in AS/NZS 1170.2 (2021), the software doesn’t use the radii values to calculate for the average \( M_{z,kat} \) waarden. In plaats daarvan, the averaging distance is used as the applicable range where we can assign a homogeneous Terrain Category, adopting the worst category for each wind source direction.

From the sections discussed above, you can use these new tools to determine the exposure or terrain categories for each wind source directions. The procedures above can give you a quick terrain classification of each wind source direction. Using GIS and AI tools, you can further check the criteria that we used above for each wind source direction and can get a better and efficient result.

Patrick Aylsworth Garcia bouwkundig ingenieur, Product ontwikkeling
Patrick Aylsworth Garcia
Bouwkundig ingenieur, Product ontwikkeling
MS Civiele Techniek
LinkedIn

Referenties:

  • Minimale ontwerpbelastingen voor gebouwen en andere constructies. (2017). ASCE / SEI 7-16. American Society of Civil Engineers.
  • Nationale Onderzoeksraad van Canada. (2015). Nationale bouwcode van Canada, 2015. Nationale Onderzoeksraad van Canada.
  • Standards Australia (2021), Structural Design Actions. Een deel 2 Windacties, Australian/New Zealand Standard AS/NZS1170.2:2021, Standards Australia, Sydney, NSW, Australië.
  • Google Maps
Was dit artikel nuttig voor jou?
Ja Nee

Hoe kunnen we helpen?

Ga naar boven