SkyCiv文档

您的SkyCiv软件指南 - 教程, 使用指南和技术文章

讲解

  1. 讲解
  2. 钢筋混凝土教程
  3. 如何设计钢筋混凝土梁?

如何设计钢筋混凝土梁?

在这篇文章中, we will show you how to design a reinforced concrete beam using SkyCiv software. This tutorial covers two software options provided by SkyCiv for beam design: The SkyCiv Beam and Structural 3D. We will delve into both tools to help you access and design beams effectively. At the end of the article, we will also apply the method of coefficients prescribed by ACI-318-19 for RC beam design.

If you are new to beam design, we would recommend reading some introductory SkyCiv articles:

These tutorials will help you gain a better understanding of the general process of designing beams.

如果你是 SkyCiv 的新手, 自行注册并测试软件!

SkyCiv Beam软件

The first stop is creating the beam model in the SkyCiv Beam Software. We indicate the steps required: (In parenthesis, we show the example data):

  • On the dashboard page, 选择光束模块.
  • 创建定义其长度的梁 (66 英尺).
  • 转到支撑并定义铰链或简单的杆 (hinge at the beginning and the end; 第三点杆).
  • 转到部分并创建一个矩形部分 (矩形截面; 宽度=18 英寸; 高度=24 英寸).
  • 然后选择分布式负载按钮并分配一个, 二, or more as you need for (叠加恒载 = 0.25 基普/英尺; 活荷载 = 0.40 基普/英尺)
  • The next step is create some load combinations (\({L_d = 1.2\times D + 1.6\times L}\))
  • 最后, solve the beam!

如何设计钢筋混凝土梁

数字 1: 应用恒载和活载的梁模型

After solving the beam, we can check the results, like the bending diagram, to get their maximum values along the element length. The following images show the final output.

如何设计钢筋混凝土梁

数字 2: Bending moment diagram due to the specified load combination

The SkyCiv Beam Software gives us a table with the maximum values for forces, 压力, and displacement:

如何设计钢筋混凝土梁

数字 3: Summary table

Now is the time to select the design tab and select and define the input as reinforcement layout, analysis sections, some coefficients, 荷载组合, 等等. Look at figures 4 和 5 for more description.

Design Reinforced Concrete Beams

数字 4: RC beam layouts

Design Reinforced Concrete Beams

数字 5: Forces and sections to evaluate when designing

Once all the data is ready, 我们可以点击 “检查一下” 纽扣. This action will give us then the results and the capacity ratios for strength and serviceability.

Design Reinforced Concrete Beams

数字 6: Beam Module Design Results.

You can then download all the reports you need for!

如果你是 SkyCiv 的新手, 自行注册并测试软件!

SkyCiv结构3D

Now is the time to use Structural 3D! We recommend just returning to the beam software and clicking on the “在S3D中打开” 纽扣. This will help us prepare the model and its inputs in S3D.

Once we clicked the change button, the model was automatically created. Remember to save it! (If you need to familiarize yourself with this module, look at this tutorial link!)

Design Reinforced Concrete Beams

数字 7: Automatically created model in S3D.

Now go directly to the “解决” icon choosing theLinear analysis” 选项. Feel free to check and compare results; 我们将使用 “设计” 选项. It is time to define all the characteristics required to evaluate the beam on the different tabs.

Design Reinforced Concrete Beams

数字 8: 会员’ information for design

Design Reinforced Concrete Beams

数字 9: 会员’ forces and sections for design

SkyCiv can check for a particular defined RC layout or calculate a section reinforcement optimization. We’d like to suggest you run this latter option.

Design Reinforced Concrete Beams

数字 10: Section Reinforcement Optimization.

数字 11 和 12 show the final result and the suggested section reinforcement calculated for the optimization design.

Design Reinforced Concrete Beams

数字 11: Structural Concrete Design Results

You can then download all the reports you need for!

Design Reinforced Concrete Beams

数字 12: Optimization in Section Reinforcement Steel

如果你是 SkyCiv 的新手, 自行注册并测试软件!

ACI-318 Approximate Equations

When designing a continuous beam, ACI-318 permits using moment coefficients for bending calculations. (For more examples, feel free to visit these SkyCiv’s articles about 楼板设计)

Moments at critical sections are calculated with: \( M_u = coefficient \times w_u \times l_n^2 \). Where the coefficient can be obtained from the following:

  • Exterior span:
    • Negative exterior: \(\压裂{1}{16}\)
    • Positive midspan: \(\压裂{1}{14}\)
    • Negative interior:\(\压裂{1}{10}\)
  • Interior span:
    • 消极的: \(\压裂{1}{11}\)
    • Positive midspan: \(\压裂{1}{16}\)

We’ll select two cases: the absolute maximum value for positive and negative bending moments.

\(wu=1.2\times D + 1.6\times L = 1.2 \次 0.25 + 1.6 \次 0.4 = 0.94 \压裂{基普}{英尺} \)

\(M_{ü,neg} = {\压裂{1}{10}}{\次 0.94 {\压裂{基普}{英尺}}}{\次 {(22 英尺)}^ 2} = 45.50 {基普}{英尺} \)

\(M_{ü,pos} = {\压裂{1}{14}}{\次 0.94 {\压裂{基普}{英尺}}}{\次 {(22 英尺)}^ 2} = 32.50 {基普}{英尺} \)

Flexure resistance calculation for negative moment, \({M_{ü,neg} = 45.50 {基普}{英尺}}\)

  • 假设张力控制部分. \({\phi_f = 0.9}\)
  • Beam width, \({b=18 in}\)
  • 钢筋面积, \({A_s = \frac{亩}{\phi_f\times 0.9d\times fy}= frac{45.50 kip-ft \times 12 in -ft }{0.9\次 0.9(17 在 )\次 60 KSI}=0.66 {在}^ 2}\)
  • \({\o{分} = 0.003162}\). 钢材最小配筋面积, \({一个_{s,分}=\rho_{分}\times b\times d = 0.003162 \次 18 in \times 17 in =0.968 {在}^ 2}\). 现在, 检查该部分是否表现为张力控制.
  • \({a = frac{A_s\times f_y}{0.85\times f’c\times b} = frac{0.968 {在}^2\times 60 KSI}{0.85\次 4 ksi\times 18 在 }= 0.95 在}\)
  • \({c = 压裂{一个}{\测试版_1}= 分数{0.95 在}{0.85} = 1.12 在 }\)
  • \({\变体_t = (\压裂{0.003}{C})\次 {(d – C)} = (\压裂{0.003}{1.12 在})\次 {(17在 – 1.12 在)} = 0.0425 > 0.005 }\) 好的!, 这是一个张力控制部分!.

Flexure resistance calculation for positive moment, \({M_{ü,pos} = 32.50 {基普}{英尺}}\)

  • 假设张力控制部分. \({\phi_f = 0.9}\)
  • Beam width, \({b=18 in}\)
  • 钢筋面积, \({A_s = \frac{亩}{\phi_f\times 0.9d\times fy}= frac{32.50 kip-ft \times 12 in -ft }{0.9\次 0.9(17 在 )\次 60 KSI}=0.472 {在}^ 2}\)
  • \({\o{分} = 0.003162}\). 钢材最小配筋面积, \({一个_{s,分}=\rho_{分}\times b\times d = 0.003162 \次 18 in \times 17 in =0.968 {在}^ 2}\). 现在, 检查该部分是否表现为张力控制.
  • \({a = frac{A_s\times f_y}{0.85\times f’c\times b} = frac{0.968 {在}^2\times 60 KSI}{0.85\次 4 ksi\times 18 在 }= 0.95 在}\)
  • \({c = 压裂{一个}{\测试版_1}= 分数{0.95 在}{0.85} = 1.12 在 }\)
  • \({\变体_t = (\压裂{0.003}{C})\次 {(d – C)} = (\压裂{0.003}{1.12 在})\次 {(17在 – 1.12 在)} = 0.0425 > 0.005 }\) 好的!, 这是一个张力控制部分!.

最后, we can see that for both moments, negative and positive, the result is to assign a minimum flexural reinforcement. The steel rebar area required equals \(0.968 {在}^2\).

如果你是 SkyCiv 的新手, 自行注册并测试软件!

本文对您有帮助吗??
是的 没有

我们能帮你什么吗?

回到顶部