Documentation SkyCiv

Votre guide du logiciel SkyCiv - tutoriels, guides pratiques et articles techniques

Conception de plaques de base SkyCiv

  1. Accueil
  2. Conception de plaques de base SkyCiv
  3. Exemples de conception de plaque de base pour la tension axiale
  4. Exemple de conception de la plaque de base (AS)

Exemple de conception de la plaque de base (AS)

Exemple de conception de plaque de base en utilisant comme 4100:2020, AS 3600:2018, AS 5216:2021

 

Déclaration de problème:

Determine whether the designed column-to-base plate connection is sufficient for a 50-kN tension load.

Données données:

Colonne:

Section colonne: 250x150x8 RHS
Zone de colonne: 5920 mm2
Matériau de colonne: AS / NZS 1163 Grain. C350

Plaque de base:

Dimensions de la plaque de base: 350 millimètre x 350 mm
Épaisseur de plaque de base: 20 mm
Matériau de plaque de base: AS / NZS 1163 Grain. C250

Jointoyer:

Épaisseur de coulis: 20 mm

Béton:

Dimensions du béton: 450 millimètre x 450 mm
Épaisseur de béton: 400 mm
Matériau en béton: N28
Cracked or Uncracked: Fissuré

Anchors:

Anchor diameter: 16 mm
Effective embedment length: 250.0 mm
Embedded plate width: 70 mm
Embedded plate thickness: 10 mm
Anchor offset distance from face of column: 62.5 mm

Soudures:

Weld type: Fillet
Weld category: PS
Classification du métal de remplissage: E43xx

Anchor Data (de SkyCiv Calculator):

Definitions:

Load Path:

When a base plate is subjected to uplift (traction) les forces, these forces are transferred to the anchor rods, which in turn induce bending moments in the base plate. The bending action can be visualized as cantilever bending occurring around the flanges or web of the column section, depending on where the anchors are positioned.

Dans le Logiciel de conception de plaque de base SkyCiv, only anchors located within the anchor tension zone are considered effective in resisting uplift. This zone typically includes areas near the column flanges or web. For rectangular columns, the anchor tension zone refers to the area adjacent to the column walls. Anchors outside this zone do not contribute to tension resistance and are excluded from the uplift calculations.

To determine the effective area of the base plate that resists bending, a 45-degree dispersion is assumed from the centerline of each anchor rod toward the column face. This dispersion defines the effective weld length and helps establish the effective bending width de la plaque.

The assumption simplifies the base plate analysis by approximating how the uplift force spreads through the plate.

Anchor Groups:

Ce logiciel Logiciel de conception de plaque de base SkyCiv includes an intuitive feature that identifies which anchors are part of an anchor group for evaluating évasion de béton et concrete side-face blowout failures.

Un anchor group consists of multiple anchors with similar effective embedment depths and spacing, and are close enough that their projected resistance areas overlap. When anchors are grouped, their capacities are combined to resist the total tension force applied to the group.

Anchors that do not meet the grouping criteria are treated as single anchors. Dans le cas présent, only the tension force on the individual anchor is checked against its own effective resistance area.

Prying Increase Factor:

Ce logiciel Logiciel de conception de plaque de base SkyCiv includes an option to apply a prying increase factor to account for additional tensile forces on the anchors due to prying action. This factor increases the load demand on the anchors during the anchor checks, providing a more conservative and realistic assessment where applicable. Par défaut, the prying increase factor is set to 1.0, meaning no additional prying load is applied unless specified by the user.

Calculs étape par étape:

Vérifier #1: Calculer la capacité de soudure

Pour commencer, we need to calculate the load per anchor and the effective weld length per anchor. The effective weld length is determined by the shortest length from the 45° dispersion, constrained by the actual weld length and anchor spacing.

For this calculation, anchors are classified as either end anchors ou intermediate anchors. End anchors are located at the ends of a row or column of anchors, while intermediate anchors are positioned between them. The calculation method differs for each and depends on the column geometry. Dans cet exemple, there are two anchors along the web, and both are classified as end anchors.

For end anchors, the effective weld length is limited by the available distance from the anchor centerline to the column corner radius. The 45° dispersion must not extend beyond this boundary.

\(
l_r = \frac{ré_{col} – 2t_{col} – 2r_{col} – s_y (n_{a,\texte{side}} – 1)}{2} = frac{250 \, \texte{mm} – 2 \fois 8 \, \texte{mm} – 2 \fois 12 \, \texte{mm} – 150 \, \texte{mm} \fois (2 – 1)}{2} = 30 \, \texte{mm}
\)

On the inner side, the effective length is limited by half the anchor spacing. The total effective weld length for the end anchor is the sum of the outer and inner lengths.

\(
l_{eff,fin} = min gauche( faire, 0.5 s_y \right) + \min gauche( faire, l_r \right)
\)

\(
l_{eff,fin} = min gauche( 62.5 \, \texte{mm}, 0.5 \fois 150 \, \texte{mm} \droite) + \min gauche( 62.5 \, \texte{mm}, 30 \, \texte{mm} \droite) = 92.5 \, \texte{mm}
\)

Dans cet exemple, the final effective weld length for the web anchor is taken as the effective length of the end anchor.

\(
l_{eff} = l_{eff,fin} = 92.5 \, \texte{mm}
\)

Prochain, let’s calculate the load per anchor. For a given set of four (4) ancres, the load per anchor is:

\(
T_{u,ancre} = frac{N_x}{n_{a,t}} = frac{50 \, \texte{kN}}{4} = 12.5 \, \texte{kN}
\)

Using the calculated effective weld length, we can now compute the required force per unit length acting on the weld.

\(
v ^ * _ w = frac{T_{u,ancre}}{l_{eff}} = frac{12.5 \, \texte{kN}}{92.5 \, \texte{mm}} = 0.13514 \, \texte{kN / mm}
\)

Maintenant, nous utiliserons AS 4100:2020 Clause 9.6.3.10 to calculate the design strength of the fillet weld.

\(
\Phi v_w = phi 0.6 F_{votre} E_w k_r = 0.8 \fois 0.6 \fois 430 \, \texte{MPa} \fois 5.657 \, \texte{mm} \fois 1 = 1.1676 \, \texte{kN / mm}
\)

In addition to checking the weld, we also need to verify the resistance of the base metal against the applied tension force to ensure it does not govern the failure mode.

\(
\phi v_{wbm} = \phi \left( \min gauche( F_{et _col} t_{col}, F_{et _bp} t_{pb} \droite) \droite)
\)

\(
\phi v_{wbm} = 0.9 \fois gauche( \min gauche( 350 \, \texte{MPa} \fois 8 \, \texte{mm}, 250 \, \texte{MPa} \fois 20 \, \texte{mm} \droite) \droite) = 2.52 \, \texte{kN / mm}
\)

Dans le cas présent, the weld resistance governs over the base metal resistance.

Puisque 0.13514 kN / mm < 1.1676 kN / mm, La capacité de soudure est suffisant.

Vérifier #2: Calculate base plate flexural yielding capacity due to tension load

En utilisant le load per anchor and the offset distance from the center of the anchor to the face of the column (serving as the load eccentricity), the moment applied to the base plate can be calculated using a cantilever assumption.

\(
M^* = T_{u,ancre} e = 12.5 \, \texte{kN} \fois 62.5 \, \texte{mm} = 781.25 \, \texte{kN} \CDOT Texte{mm}
\)

Prochain, using the calculated effective weld length from the previous check as the bending width, Nous pouvons calculer le SkyCiv Foundation est un module de conception pour la conception de semelles écartées à partir des charges de superstructure of the base plate using AISC 360-22, Équation 2-1:

\(
\phi M_s = \phi Z_{eff} F_{et _bp} = 0.9 \fois 9250 \, \texte{mm}^3 \times 250 \, \texte{MPa} = 2081.2 \, \texte{kN} \CDOT Texte{mm}
\)

Où,

\(
Z_{eff} = frac{l_{eff} (t_{pb})^ 2}{4} = frac{92.5 \, \texte{mm} \fois (20 \, \texte{mm})^ 2}{4} = 9250 \, \texte{mm}^ 3
\)

Puisque 781.25 kN-mm < 2081.2 kN-mm, the base plate flexural yielding capacity is suffisant.

Vérifier #3: Calculate anchor rod tensile capacity

To evaluate the tensile capacity of the anchor rod, we refer to AS 5216:2021 Clause 6.2.2 et AS 4100:2020 Clause 9.2.2.2.

Première, Nous déterminons le = facteur de réduction pour filetage coupé of the threaded portion of the rod, Suivant AS 4100:2020 Clause 7.2 et AS 1275–1985 Clause 1.7.

\(
A_n = \frac{\pi}{4} \la gauche( \frac{d_a}{\texte{mm}} – 0.9382 P \right)^ 2 \, \texte{mm}^2 = \frac{\pi}{4} \fois gauche( \frac{16 \, \texte{mm}}{1 \, \texte{mm}} – 0.9382 \fois 2 \droite)^2 \times 1 \, \texte{mm}À partir de l'élévation du sol générée à partir des élévations Google 156.67 \, \texte{mm}^ 2
\)

En utilisant AS 4100:2020 Clause 9.2.2, on calcule le nominal tension capacity of the bolt based on the tensile stress area and the material strength.

\(
N_{tf} = A_n F_{u\_anc} = 156.67 \, \texte{mm}^2 \times 800 \, \texte{MPa} = 125.33 \, \texte{kN}
\)

We then apply the appropriate resistance factor to obtain the design anchor capacity in tension.

\(
\phi N_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,s} = \phi N_{tf} = 0.8 \fois 125.33 \, \texte{kN} = 100.27 \, \texte{kN}
\)

Recall the previously calculated tension load per anchor, and apply the prying increase factor if specified.

\(
N^* = p \left( \frac{N_x}{n_{a,t}} \droite) = 1 \fois gauche( \frac{50 \, \texte{kN}}{4} \droite) = 12.5 \, \texte{kN}
\)

Puisque 12.5 kN < 100.27 kN, l' anchor rod tensile capacity is sufficient.

Vérifier #4: Calculate concrete breakout capacity in tension

Before calculating the breakout capacity, we must first determine whether the member qualifies as a narrow member. Selon AS 5216:2021 Clause 6.2.3.8, the member meets the criteria for a narrow member. Par conséquent, a modified effective embedment length must be used in the breakout capacity calculations. This adjustment also affects the characteristic spacing et characteristic edge distance, which must be modified accordingly.

Based on the narrow member criteria, l' modified values for the anchor group are as follows:

  • modified effective embedment length, \(h’_{ef} = 100 \, \texte{mm}\)
  • modified characteristic spacing, \(s’_{cr} = 300 \, \texte{mm}\)
  • modified characteristic edge distance, \(c’_{cr} = 150 \, \texte{mm}\)

En utilisant AS 5216: 2021 Clause 6.2.3.3, on calcule le reference projected concrete cone area pour une seule ancre.

\(
A0_{c,N} = gauche( s’_{cr,g1} \droite)^2 = \left( 300 \, \texte{mm} \droite)À partir de l'élévation du sol générée à partir des élévations Google 90000 \, \texte{mm}^ 2
\)

De manière similaire, on calcule le actual projected concrete cone area of the anchor group.

\(
UNE_{NC} = L_{NC} B_{NC} = 450 \, \texte{mm} \fois 450 \, \texte{mm} = 202500 \, \texte{mm}^ 2
\)

Où,

\(
L_{NC} = min gauche( c_{la gauche,g1}, c’_{cr,g1} + r_{embed\_plate} \droite) + \min gauche( s_{somme,z,g1}, s’_{cr,g1} \cdot \left( n_{z,g1} – 1 \droite) \droite) + \min gauche( c_{droite,g1}, c’_{cr,g1} + r_{embed\_plate} \droite)
\)

\(
L_{NC} = min gauche( 87.5 \, \texte{mm}, 150 \, \texte{mm} + 18 \, \texte{mm} \droite) + \min gauche( 275 \, \texte{mm}, 300 \, \texte{mm} \cdot (2 – 1) \droite) + \min gauche( 87.5 \, \texte{mm}, 150 \, \texte{mm} + 18 \, \texte{mm} \droite)
\)

\(
L_{NC} = 450 \, \texte{mm}
\)

\(
B_{NC} = min gauche( c_{Haut,g1}, c’_{cr,g1} + r_{embed\_plate} \droite) + \min gauche( s_{somme,Y,g1}, s’_{cr,g1} \cdot \left( n_{Y,g1} – 1 \droite) \droite) + \min gauche( c_{bas,g1}, c’_{cr,g1} + r_{embed\_plate} \droite)
\)

\(
B_{NC} =\min \left( 150 \, \texte{mm}, 150 \, \texte{mm} + 18 \, \texte{mm} \droite) + \min gauche( 150 \, \texte{mm}, 300 \, \texte{mm} \cdot (2 – 1) \droite) + \min gauche( 150 \, \texte{mm}, 150 \, \texte{mm} + 18 \, \texte{mm} \droite)
\)

\(
B_{NC} = 450 \, \texte{mm}
\)

Ce logiciel embedded plate effective radius is used to provide additional capacity for concrete breakout. To determine this, add the thickness of the embedded plate to half of the anchor diameter.

Prochain, we evaluate the characteristic strength of a single anchor using AS 5216:2021 Eq. 6.2.3.2

\(
N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,c} = k_1 \sqrt{\frac{f'_c}{\texte{MPa}}} \la gauche( \frac{h’_{ef,g1}}{\texte{mm}} \droite)^{1.5} \, \texte{N}
\)

\(
N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,c} = 8.9 \fois sqrt{\frac{28 \, \texte{MPa}}{1 \, \texte{MPa}}} \fois gauche( \frac{100 \, \texte{mm}}{1 \, \texte{mm}} \droite)^{1.5} \fois 0.001 \, \texte{kN} = 47.094 \, \texte{kN}
\)

Où,

  • \(afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués{1} = 8.9\) pour ancres coulées

Maintenant, we assess the effects of geometry by calculating the necessary paramètres for breakout resistance.

The shortest edge distance of the anchor group is determined as:

\(
c_{min,N} = min gauche( c_{la gauche,g1}, c_{droite,g1}, c_{Haut,g1}, c_{bas,g1} \droite) = min gauche( 87.5 \, \texte{mm}, 87.5 \, \texte{mm}, 150 \, \texte{mm}, 150 \, \texte{mm} \droite) = 87.5 \, \texte{mm}
\)

Selon AS 5216:2021 Eq. 6.2.3.4, the value for the parameter accounting for distribution of stress in concrete is:

\(
\Psi_{s,N} = min gauche( 0.7 + 0.3 \la gauche( \frac{c_{min,N}}{c’_{cr,g1}} \droite), 1.0 \droite) = min gauche( 0.7 + 0.3 \fois gauche( \frac{87.5 \, \texte{mm}}{150 \, \texte{mm}} \droite), 1 \droite) = 0.875
\)

Ce logiciel shell spalling effect is accounted for using AS 5216:2021 Équation 6.2.3.5, giving:

\(
\Psi_{= facteur de réduction pour filetage coupé,N} = min gauche( 0.5 + \frac{h’_{ef,g1}}{\texte{mm} \cdot 200}, 1.0 \droite) = min gauche( 0.5 + \frac{100 \, \texte{mm}}{1 \, \texte{mm} \cdot 200}, 1 \droite) = 1
\)

Aussi, both the eccentricity factor et la compression influence factor are taken as:

\(
\Psi_{ce,N} = 1
\)

\(
\Psi_{M,N} = 1
\)

We then combine all these factors and apply AS 5216:2021 Équation 6.2.3.1 to evaluate the design concrete cone breakout resistance for the anchor group:

\(
\phi N_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,c} = phi_{Mc} N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,c} \la gauche( \frac{UNE_{NC}}{A0_{c,N}} \droite) \Psi_{s,N} \Psi_{= facteur de réduction pour filetage coupé,N} \Psi_{ce,N} \Psi_{M,N}
\)

\(
\phi N_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,c} = 0.6667 \fois 47.094 \, \texte{kN} \fois gauche( \frac{202500 \, \texte{mm}^ 2}{90000 \, \texte{mm}^ 2} \droite) \fois 0.875 \fois 1 \fois 1 \fois 1 = 61.814 \, \texte{kN}
\)

Ce logiciel total applied tension load on the anchor group is calculated by multiplying the tension load per anchor by the number of anchors, with the prying increase factor applied as needed:

\(
N^* = p \left( \frac{N_x}{n_{a,t}} \droite) n_{a,g1} = 1 \fois gauche( \frac{50 \, \texte{kN}}{4} \droite) \fois 4 = 50 \, \texte{kN}
\)

Puisque 50 kN < 61.814 kN the concrete breakout capacity is suffisant.

Vérifier #5: Calculate anchor pullout capacity

Ce logiciel pullout capacity of an anchor is governed by the resistance at its embedded end. Première, we compute the maximum anchor head dimension effective for pull out resistance, selon AS 5216:2021 Clause 6.3.4.

\(
ré_{h,\texte{max}} = min gauche( b_{embed\_plate}, 6 \la gauche( t_{embed\_plate} \droite) + d_a \right) = min gauche( 70 \, \texte{mm}, 6 \fois (10 \, \texte{mm}) + 16 \, \texte{mm} \droite) = 70 \, \texte{mm}
\)

Prochain, we calculate the net bearing area of the rectangular embedded plate using:

\(
A_h = \left( ré_{h,\texte{max}}^ 2 à droite) – UNE_{canne à pêche} = gauche( (70 \, \texte{mm})^ 2 à droite) – 201.06 \, \texte{mm}À partir de l'élévation du sol générée à partir des élévations Google 4698.9 \, \texte{mm}^ 2
\)

Où,

\(
UNE_{canne à pêche} = frac{\pi}{4} (d_a)^2 = \frac{\pi}{4} \fois (16 \, \texte{mm})À partir de l'élévation du sol générée à partir des élévations Google 201.06 \, \texte{mm}^ 2
\)

We then calculate the design basic anchor pullout strength utilisant AS 5216:2021 Clause 6.3.4:

\(
N_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,p} = phi_{Mc} k_2 A_h \left( F’_C Right) = 0.6667 \fois 7.5 \fois 4698.9 \, \texte{mm}^2 \times (28 \, \texte{MPa}) = 657.88 \, \texte{kN}
\)

Recall the previously calculated tension load per anchor:

\(
N^* = p \left( \frac{N_x}{n_{a,t}} \droite) = 1 \fois gauche( \frac{50 \, \texte{kN}}{4} \droite) = 12.5 \, \texte{kN}
\)

Puisque 12.5 kN < 657.88 kN, the anchor pullout capacity is suffisant.

Vérifier #6: Calculate side-face blowout capacity in Y-direction

Let’s consider Side-Face Blowout Anchor Group 1 for the capacity calculation. Referring to the Anchor Data Summary, Anchor IDs 3 et 4 are part of SFy Group 1.

We begin by calculating the edge distance to the failure edge.

\(
c_{z,\texte{min}} = min gauche( c_{\texte{la gauche},g1}, c_{\texte{droite},g1} \droite) = min gauche( 87.5 \, \texte{mm}, 362.5 \, \texte{mm} \droite) = 87.5 \, \texte{mm}
\)

Prochain, we determine the edge distance to the orthogonal edge.

\(
c_{Y,\texte{min}} = min gauche( c_{\texte{Haut},g1}, c_{\texte{bas},g1} \droite) = min gauche( 150 \, \texte{mm}, 150 \, \texte{mm} \droite) = 150 \, \texte{mm}
\)

En utilisant AS 5216:2021 Clause 6.2.7.3, let’s calculate the reference projected area of a single fastener.

\(
A0_{c,Nb} = gauche( 4 c_{z,\texte{min}} \droite)^2 = \left( 4 \fois 87.5 \, \texte{mm} \droite)À partir de l'élévation du sol générée à partir des élévations Google 122500 \, \texte{mm}^ 2
\)

Since we are checking the capacity of the anchor group, let’s get the actual projected area of the anchor group using AS 5216:2021 Clause 6.2.7.2.

\(
UNE_{NC} = B_{c,Nb} H_{c,Nb} = 450 \, \texte{mm} \fois 325 \, \texte{mm} = 146250 \, \texte{mm}^ 2
\)

Où,

\(
B_{c,Nb} = min gauche( 2 c_{z,\texte{min}}, c_{\texte{Haut},g1} \droite) + s_{\texte{somme},Y,g1} + \min gauche( 2 c_{z,\texte{min}}, c_{\texte{bas},g1} \droite)
\)

\(
B_{c,Nb} = min gauche( 2 \fois 87.5 \, \texte{mm}, 150 \, \texte{mm} \droite) + 150 \, \texte{mm} + \min gauche( 2 \fois 87.5 \, \texte{mm}, 150 \, \texte{mm} \droite) = 450 \, \texte{mm}
\)

\(
H_{c,Nb} = 2 c_{z,\texte{min}} + \la gauche( \min gauche( t_{\texte{conc}} – h_{\texte{ef}}, 2 c_{z,\texte{min}} \droite) \droite)
\)

\(
H_{c,Nb} = 2 \fois 87.5 \, \texte{mm} + \la gauche( \min gauche( 400 \, \texte{mm} – 250 \, \texte{mm}, 2 \fois 87.5 \, \texte{mm} \droite) \droite) = 325 \, \texte{mm}
\)

In computing the characteristic concrete blow-out strength of an individual anchor, nous utiliserons AS 5216:2021 Clause 6.2.7.2.

\(
N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,cb} = k_5 \left( \frac{c_{z,\texte{min}}}{\texte{mm}} \droite) \sqrt{\frac{A_h}{\texte{mm}^ 2}} \sqrt{\frac{f'_c}{\texte{MPa}}} \, N
\)

\(
N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,cb} = 8.7 \fois gauche( \frac{87.5 \, \texte{mm}}{1 \, \texte{mm}} \droite) \fois sqrt{\frac{4698.9 \, \texte{mm}^ 2}{1 \, \texte{mm}^ 2}} \fois sqrt{\frac{28 \, \texte{MPa}}{1 \, \texte{MPa}}} \fois 0.001 \, \texte{kN}
\)

\(
N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,cb} = 276.13 \, \texte{kN}
\)

Où,

  • \(afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués{5} = 8.7\) pour béton fissuré
  • \(afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués{5} = 12.2\) for uncracked concrete

ensuite, we will get the side-face blowout parameters.

The parameter accounting for the disturbance of the distribution of stresses in concrete can be calculated from AS 5216:2021 Clause 6.2.7.4.

\(
\Psi_{s,Nb} = min gauche( 0.7 + 0.3 \la gauche( \frac{c_{Y,\texte{min}}}{2 c_{z,\texte{min}}} \droite), 1.0 \droite)
\)

\(
\Psi_{s,Nb} = min gauche( 0.7 + 0.3 \fois gauche( \frac{150 \, \texte{mm}}{2 \fois 87.5 \, \texte{mm}} \droite), 1 \droite) = 0.95714
\)

The equation from AS 5216:2021 Clause 6.2.7.5 is then used to get the parameter accounting for the group effect.

\(
\Psi_{g,Nb} = max gauche( \sqrt{n_{Y,g1}} + \la gauche( 1 – \sqrt{n_{Y,g1}} \droite) \la gauche( \frac{\min gauche( s_{Y,g1}, 4 c_{z,\texte{min}} \droite)}{4 c_{z,\texte{min}}} \droite), 1.0 \droite)
\)

\(
\Psi_{g,Nb} = max gauche( \sqrt{2} + \la gauche( 1 – \sqrt{2} \droite) \fois gauche( \frac{\min gauche( 150 \, \texte{mm}, 4 \fois 87.5 \, \texte{mm} \droite)}{4 \fois 87.5 \, \texte{mm}} \droite), 1 \droite)
\)

\(
\Psi_{g,Nb} = 1.2367
\)

Ensuite, in reference to AS 5216:2021 Eq. 6.2.7 for headed anchor rods, l' design concrete blow-out resistance est:

\(
\phi N_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,cb} = \phi_M N0_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,cb} \la gauche( \frac{UNE_{NC}}{A0_{c,Nb}} \droite) \Psi_{s,Nb} \Psi_{g,Nb} \Psi_{ce,N}
\)

\(
\phi N_{afin que les ingénieurs puissent revoir exactement comment ces calculs sont effectués,cb} = 0.6667 \fois 276.13 \, \texte{kN} \fois gauche( \frac{146250 \, \texte{mm}^ 2}{122500 \, \texte{mm}^ 2} \droite) \fois 0.95714 \fois 1.2367 \fois 1 = 260.16 \, \texte{kN}
\)

For this anchor group, only two (2) anchors belong to group. Par conséquent, l' design tension force for the anchor group is:

\(
N^* = p \left( \frac{N_x}{n_{a,t}} \droite) n_{Y,g1}
\)

\(
N^* = 1 \fois gauche( \frac{50 \, \texte{kN}}{4} \droite) \fois 2 = 25 \, \texte{kN}
\)

Puisque 25 kN < 260.16 kN, the concrete side-face blowout along Y-direction is suffisant.

Side-Face Blowout Anchor Group 2 can also be used and will yield the same result, since the design is symmetric.

Vérifier #7: Calculate side-face blowout capacity in Z-direction

This calculation is not applicable for failure along the Z-direction, as the edge distance to the sides exceeds half of the effective embedment length.

Résumé de la conception

Ce logiciel Logiciel de conception de plaques de base Skyciv can automatically generate a step-by-step calculation report for this design example. Il fournit également un résumé des contrôles effectués et de leurs ratios résultants, rendre les informations faciles à comprendre en un coup d'œil. Vous trouverez ci-dessous un échantillon de tableau de résumé, qui est inclus dans le rapport.

Rapport d'échantillon de skyciv

Cliquez ici Pour télécharger un exemple de rapport.

Logiciel d'achat de plaques de base

Achetez la version complète du module de conception de la plaque de base seul sans aucun autre module Skyviv. Cela vous donne un ensemble complet de résultats pour la conception de la plaque de base, y compris des rapports détaillés et plus de fonctionnalités.

Cet article vous a-t-il été utile ?
Oui Non

Comment pouvons nous aider?

Aller en haut