Documentation SkyCiv

Votre guide du logiciel SkyCiv - tutoriels, guides pratiques et articles techniques

Générateur de charge SkyCiv

  1. Accueil
  2. Générateur de charge SkyCiv
  3. Charges de vent
  4. Comment déterminer la catégorie de terrain pour les calculs de charge de vent

Comment déterminer la catégorie de terrain pour les calculs de charge de vent

Dans cet article, we will walk you through the how to determine the terrain or exposure categories of the upwind side the site location, which are essential for calculating wind loads. We will cover the specific procedures outlined in ASCE 7, CNBC 2015, et AS / NZS 1170.2 for determining the terrain categories and discuss how these apply to each reference code available in the SkyCiv Load Generator.

ASCE 7-16/ASCE 7-22

Pour ASCE 7, the procedure to determine the Exposure Category of the upwind exposure of a site location is discussed in Section 26.7, depending on the terrain. Dans cet article, to simplify the reference, we shall be using ASCE 7-16. For each wind source direction, it should be analyzed from two upwind sectors extending ±45°.

Wind Direction sectors

Figure 1. Terrain sectors for each wind source direction.

For each sector, the Surface Roughness category should be checked based on the following definition based on Section 26.7.2 de l'ASCE 7-16:

ASCE 7 Suface Roughness definition

Table 1. Surface Roughness definition based on Section 26.7.2 de l'ASCE 7-16.

From the definition of Surface Roughness, we can determine the Exposure Category of the terrain bounded by the upwind sector. The definition for each Exposure Category is stated in Section 26.7.3 de l'ASCE 7-16 comme suit:

ASCE 7 Exposure Category definition

Table 2. Exposure Category definition based on Section 26.7.3 de l'ASCE 7-16.

The Table 2 can be visualized thru the following figures based on Figure C26.7-2:

Exposure B diagram (SkyCiv)

Figure 2. Upwind Surface Roughness conditions required For Exposure B.

Exposure D condition 1 - Générateur de charge SkyCiv

Figure 3. Upwind Surface Roughness condition required For Exposure D – Cas 1.

Exposure D condition 2 - Générateur de charge SkyCiv

Figure 4. Upwind Surface Roughness condition required For Exposure D – Cas 2.

The Exposure Category shall be determined for each wind source direction. Using an example site location – “1200 S DuSable Lake Shore Dr, Chicago, LES 60605, Etats-Unis”, lets analyze this for each direction.

Example location for Exposure Category Analysis

Figure 4. Sample location for Exposure Category analysis.

Assuming the mean roof height of the structure is 25 pi ( \( 20h = 500 pi \)), we will use the following procedure to check the Exposure Category for each sector:

État 1. Determine if Exposure D using Figure 3:

Using Figure 3 – where the distance \( ré_{1} \) est 5000 pi (1524 m), we need to check for Exposure D, where Surface Roughness D is dominant for the whole 5000 ft stretch:

Drawn sectors for each wind source direction

Figure 5. Offset distance of 5000 ft from site location for Exposure D check using Figure 3.

De la figure 5, we can already conclude that wind source directions N, NE, et E have Surface Roughness D for the whole 5000 ft stretch. Par conséquent, these wind source directions are Exposition D.

État 2. Determine if Exposure D using Figure 2

Using Figure 4 – where the distance \( ré_{1} \) est 5000 pi (1524 m) and distance \( ré_{2} \) est égal à 600 pi (183 m), we need to check for Exposure D. De la figure 5, this can only be applied for wind source direction from SE:

Exposure category check using Figure 5

Figure 6. Offset distance of 600ft and additional 5000 ft from site location for Exposure D check using Figure 4.

For wind source direction SE, utilisant \( ré_{2} = 600 pi \), we can consider that this section is Surface Roughness B. Par contre, for distance \( ré_{1} = 5000 pi \), the section is not 100% Surface Roughness D. Donc, SE should not be considered as Exposure D.

État 3. Determine if Exposure B using Figure 1

Using Figure 3 – where the distance \( ré_{1} \) est 1500 pi (457 m) puisque \( h < 30 pi \), we need to check for Exposure B.

Distance offset for checking Exposure B

Figure 7. Offset distance of 1500 ft from site location for Exposure B check using Figure 3.

De la figure 7, we can determine that for wind source directions NW, W, SW, and S are classified as Exposure B as the surface roughness for each direction sector is Surface Roughness B.

État 4. If conditions 1 à 3 are not true, donc, the terrain is Exposure C.

Par conséquent, for wind source direction SE, it is classified as Exposure Category C. En résumé, the exposure categories for each wind source direction is shown in Figure 8 ci-dessous.

Classified exposure categories for all wind source directions

Figure 8. The exposure categories for each wind source direction.

These data can be used to determine what will be the worst wind source direction as the Velocity Pressure Coefficients \( K_{z} \), Facteur topographique \( K_{.} \), and Gust-effect Factor \( g \) using detailed calculation are affected by the Exposure Category.

CNBC 2015/2020

For NBCC 2015, the procedure to determine the Exposure Category of the upwind exposure of a site location is discussed in Section 4.1.7.3(5), depending on the terrain. For each wind source direction, it should be analyzed from two upwind sectors extending ±45°.

Offset distance of 50m and 1km for determining terrain category based on NBCC 2015

 

Figure 9. Terrain sectors for each wind source direction.

For each sector, the terrain category should be checked based on the following definition based on Section 4.1.7.3(5) du NBCC 2015:

Terrain category definition in NBCC 2015

Table 3. Definition of terrain categories as defined in Section 4.1.7.3(5) du NBCC 2015.

Visualizing the options in Table 3:

Rough terrain as defined in NBCC 2015

Figure 10. Definition of Rough Terrain as defined in Section 4.1.7.3(5) du NBCC 2015.

Open terrain as defined in NBCC 2015

Figure 10. Definition of Open Terrain as defined in Section 4.1.7.3(5) du NBCC 2015.

Based on Section 4.1.7.3(5) du NBCC 2015, it is permitted to interpolate the Facteur d'exposition \( C_{e} \) in intermediate terrain. If the rough terrain distance from the structure location is greater than or equal to 1km or 20 fois la hauteur de la structure, celui qui est le plus élevé, le terrain peut être considéré comme Terrain accidenté, et si la distance est inférieure à 50 m, il est considéré comme Terrain ouvert. Sur ce, the Exposure Factor \( C_{e} \) selon la section 4.1.7.3(5) will be calculated from the boundary values. This can be visualized in Figure 11 ci-dessous.

Intermediate terrain based on NBCC 2015

Figure 11. Definition of Intermediate Terrain as defined in Section 4.1.7.3(5) du NBCC 2015.

To further illustrate this, let’s use an example site location – “657 Masters Rd SE, Calgary, AB T3M 2B6, Canada,” assuming the structure height \( H \) est 25 m ( \( 20H = 500 m \)).

Site location for our example terrain category analysis

Figure 12. Sample location for Terrain Category analysis.

First step is to classify the obvious rough and open terrain categories for each wind source direction. We can draw 50m and max of 1 km or \( 20 H \) radius from the site location.

Figure 13. Offset distance of 50m and 1km for determining terrain category based on Table 1 definitions.

De la figure 13, we can say that the wind source directions NE, E, et SE are classified as Open terrain as the rough terrain length for each direction is less than 50m from the site location. De plus, for wind source directions W and NW can be classified as Rough Terrain as the rough terrain length for these directions is greater than 1 km. For wind source direction N, we can conservatively assume that the Open Terrain is dominant in this direction. For the rest, S and SW, we can conclude that these are Intermediate Terrain and we will need to measure the distance of the rough terrain from the site location.

Distance measured from site location for SW direction

Figure 14. Approximate rough terrain length measured from site location for SW wind source direction equal to 574 m.

Distance measured from site location for S direction

Figure 15. Approximate rough terrain length measured from site location for S wind source direction equal to 249 m.

From the analysis above, definitely the wind source directions with Open Terrain will definitely yield the conservative values. Par contre, if all wind source directions are classified to Intermediate Terrain, the procedure above is how you can determine the appropriate Terrain Category for each direction.

 

AS / NZS 1170.2 (2021)

Pour AS / NZS 1170.2, the same procedure with the above references applies in determining the Terrain Category of the upwind exposure of a site location. This is discussed in Section 4.2 d'AS / NZS 1170.2 (2021). For each wind source direction, it should be analyzed from two upwind sectors extending ±45°. The definition of each terrain category are shown below based on Section 4.2.1 d'AS / NZS 1170.2 (2021):

Terrain category definition based on AS/NZS 1170.2 (2021)

Table 4. Definition of terrain categories as defined in Section 4.2.1 d'AS / NZS 1170.2 (2021).

In determining the terrain category for a direction, a lag distance equal to \( 20 z \) from the structure location shall be neglected. À partir de ce point, an offset distance (averaging distance) de 500 m ou \( 40 Avec), whichever is larger, shall be used as shown in Figure 16 ci-dessous. Le \( z \) value is equal to the average roof height, \( h \), when it is less than or equal to 25 m. It is possible that within this averaging distance to have multiple terrain categories, and as such, linear interpolation of shall be used in determining the \( M_{z,chat} \) en main, depending on the length of each terrain category, comme illustré sur la figure 4.1 d'AS / NZS 1170.2 (2021). Dans cet article, we shall only consider a homogeneous terrain category within the averaging distance.

Illustrated distances used for determining the terrain category of the upwind section of a location based on AS/NZS 1170.2

Figure 16. Illustration of the distances used in determing Terrain Category based on AS/NZS 1170.2 (2021).

To further illustrate this, let’s use an example site locationLat: 32°43’46S Lng: 151°31’47″E – assuming the mean roof height \( h \) est 10 m ( où \( 20z = 20h = 200 m \) et \( 40z = 400 m \)).

Sample location for determining terrain category using AS/NZS 1170.2 (2021)

Figure 17. The site location with lag distance equal to 200 m and averaging distance equal to 500 m for each wind source direction.

Since we are only to consider the terrain category as homogeneous throughout the entire 500m or \( 40z \) distance, we can already classify each wind source direction. Assuming the buildings on N, NE and E, are buildings that are 5 à 10 m de haut, we can classify these to Terrain Category 3 (TC3) comme indiqué dans le tableau 4. For wind source directions SE, S, SW, and W, since these are grass plains without obstructions, we can classify these as Terrain Category 1 (TC1). Ensuite, for wind source direction NW, we can deduce that there are more than two but less than 10 buildings per hectare, with scattered houses. Par conséquent, we can classify this as Terrain Category 2.5 (TC2.5).

Summary of Terrain Categories according AS/NZS 1170.2 (2021)

Figure 18. Summary of terrain category classification for each wind source direction for our sample location.

Using SkyCiv Load Generator

In SkyCiv Load Generator version v4.7.0, new map tools are introducedMesurer la distance et Rayons de distance outils.

Outils de mesure de distance dans SkyCiv Load Generator

Figure 19. Outils de mesure de distance introduits dans SkyCiv Load Generator.

Le Mesurer la distance l'outil est utilisé pour générer un cercle à partir d'un point cliqué sur la carte et afficher son rayon en mètres. Par ici, vous pouvez mesurer les distances entre l'emplacement analysé et certains emplacements. This can be used in measuring in NBCC 2015 pour le Étendue du terrain accidenté au vent used in calculating Facteur d'exposition \( C_{e} \). Clicking the circle generated will clear it from the map.

Outil Mesurer la distance dans SkyCiv Load Generator

Figure 20. Measure distance tool which creates an offset from the location and showing the radius/offset distance from the center introduced to SkyCiv Load Generator.

En revanche, l' Rayons de distance est introduit afin que les utilisateurs puissent dessiner des cercles avec des distances spécifiées depuis l'emplacement pour chaque catégorie de source de vent. It is a toggle button to show or hide the distance radii on the map, with the site location as the center of the circles.

Outil de rayons de distance dans SkyCiv Load Generator

Figure 21. Distance Radii tool which specified offset distances from the site location introduced to SkyCiv Load Generator.

The radii values can be edited upon opening the Settings.

Paramètres dans le générateur de charge SkyCiv

Figure 22. Option dans les paramètres pour modifier les distances pour l'outil Distance Radii dans SkyCiv Load Generator.

Take note that users must edit the distance values as these are not automatically calculated by the software. Using this for ASCE 7 et NBCC, the worst exposure or terrain category for each wind source direction shall be adopted. With regard to using it in AS/NZS 1170.2 (2021), the software doesn’t use the radii values to calculate for the average \( M_{z,chat} \) en main. Au lieu, the averaging distance is used as the applicable range where we can assign a homogeneous Terrain Category, adopting the worst category for each wind source direction.

From the sections discussed above, you can use these new tools to determine the exposure or terrain categories for each wind source directions. The procedures above can give you a quick terrain classification of each wind source direction. Using GIS and AI tools, you can further check the criteria that we used above for each wind source direction and can get a better and efficient result.

Patrick Aylsworth Garcia Ingénieur en structure, Développement de produits
Patrick Aylsworth Garcia
Ingénieur en structure, Développement de produits
MS Génie Civil
LinkedIn

Références:

  • Charges minimales de conception pour les bâtiments et autres structures. (2017). ASCE / SEI 7-16. Société américaine des ingénieurs civils.
  • Conseil national de recherches du Canada. (2015). Code national du bâtiment du Canada, 2015. Conseil national de recherches du Canada.
  • Standards Australia (2021), Structural Design Actions. Partie 2 Actions du vent, Australian/New Zealand Standard AS/NZS1170.2:2021, Standards Australia, Sydney, NSW, l'Australie.
  • Google Maps
Cet article vous a-t-il été utile ?
Oui Non

Comment pouvons nous aider?

Aller en haut