Ejemplo de diseño de placa base utilizando como 4100:2020, AS 3600:2018, AS 5216:2021
Declaración del problema:
Determine whether the designed column-to-base plate connection is sufficient for a 50-kN tension load.
Datos dados:
Columna:
Sección de columna: 250x150x8 RHS
Área de columna: 5920 mm2
Material de columna: AS / NZS 1163 Gramo. C350
Plato base:
Dimensiones de placa base: 350 mm x 350 mm
Espesor de la placa base: 20 mm
Material de placa base: AS / NZS 1163 Gramo. C250
Lechada:
Espesor de la lechada: 20 mm
Hormigón:
Dimensiones concretas: 450 mm x 450 mm
Espesor de concreto: 400 mm
Material de hormigón: N28
Cracked or Uncracked: Cracked
Anchors:
Anchor diameter: 16 mm
Effective embedment length: 250.0 mm
Embedded plate width: 70 mm
Embedded plate thickness: 10 mm
Anchor offset distance from face of column: 62.5 mm
Soldaduras:
Weld type: Fillet
Weld category: SP
Clasificación de metal de relleno: E43xx
Anchor Data (de SkyCiv Calculator):
Definitions:
Load Path:
When a base plate is subjected to uplift (de tensión) efectivo, these forces are transferred to the anchor rods, which in turn induce bending moments in the base plate. The bending action can be visualized as cantilever bending occurring around the flanges or web of the column section, depending on where the anchors are positioned.
En el Software de diseño de placa base SkyCiv, only anchors located within the anchor tension zone are considered effective in resisting uplift. This zone typically includes areas near the column flanges or web. For rectangular columns, the anchor tension zone refers to the area adjacent to the column walls. Anchors outside this zone do not contribute to tension resistance and are excluded from the uplift calculations.
To determine the effective area of the base plate that resists bending, a 45-degree dispersion is assumed from the centerline of each anchor rod toward the column face. This dispersion defines the effective weld length and helps establish the effective bending width del plato.
The assumption simplifies the base plate analysis by approximating how the uplift force spreads through the plate.
Anchor Groups:
El Software de diseño de placa base SkyCiv includes an intuitive feature that identifies which anchors are part of an anchor group for evaluating ruptura de concreto y concrete side-face blowout failures.
Un anchor group consists of multiple anchors with similar effective embedment depths and spacing, and are close enough that their projected resistance areas overlap. When anchors are grouped, their capacities are combined to resist the total tension force applied to the group.
Anchors that do not meet the grouping criteria are treated as single anchors. En este caso, only the tension force on the individual anchor is checked against its own effective resistance area.
Prying Increase Factor:
El Software de diseño de placa base SkyCiv includes an option to apply a prying increase factor to account for additional tensile forces on the anchors due to prying action. This factor increases the load demand on the anchors during the anchor checks, providing a more conservative and realistic assessment where applicable. Por defecto, the prying increase factor is set to 1.0, meaning no additional prying load is applied unless specified by the user.
Cálculos paso a paso:
Cheque #1: Calcular la capacidad de soldadura
Empezar, we need to calculate the load per anchor and the effective weld length per anchor. The effective weld length is determined by the shortest length from the 45° dispersion, constrained by the actual weld length and anchor spacing.
For this calculation, anchors are classified as either end anchors o intermediate anchors. End anchors are located at the ends of a row or column of anchors, while intermediate anchors are positioned between them. The calculation method differs for each and depends on the column geometry. En este ejemplo, there are two anchors along the web, and both are classified as end anchors.
For end anchors, the effective weld length is limited by the available distance from the anchor centerline to the column corner radius. The 45° dispersion must not extend beyond this boundary.
\(
l_r = \frac{D_{columna} – 2A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{columna} – 2r_{columna} – s_y (n_{a,\texto{lado}} – 1)}{2} = frac{250 \, \texto{mm} – 2 \veces 8 \, \texto{mm} – 2 \veces 12 \, \texto{mm} – 150 \, \texto{mm} \veces (2 – 1)}{2} = 30 \, \texto{mm}
\)
On the inner side, the effective length is limited by half the anchor spacing. The total effective weld length for the end anchor is the sum of the outer and inner lengths.
\(
l_{efecto,final} = min left( hacer, 0.5 s_y \right) + \min izquierda( hacer, l_r \right)
\)
\(
l_{efecto,final} = min left( 62.5 \, \texto{mm}, 0.5 \veces 150 \, \texto{mm} \verdad) + \min izquierda( 62.5 \, \texto{mm}, 30 \, \texto{mm} \verdad) = 92.5 \, \texto{mm}
\)
En este ejemplo, the final effective weld length for the web anchor is taken as the effective length of the end anchor.
\(
l_{efecto} = L_{efecto,final} = 92.5 \, \texto{mm}
\)
próximo, let’s calculate the load per anchor. For a given set of four (4) anclas, the load per anchor is:
\(
T_{tu,ancla} = frac{N_X}{n_{a,t}} = frac{50 \, \texto{kN}}{4} = 12.5 \, \texto{kN}
\)
Using the calculated effective weld length, we can now compute the required force per unit length acting on the weld.
\(
V^*_ w = frac{T_{tu,ancla}}{l_{efecto}} = frac{12.5 \, \texto{kN}}{92.5 \, \texto{mm}} = 0.13514 \, \texto{kN / mm}
\)
Ahora, usaremos AS 4100:2020 Cláusula 9.6.3.10 to calculate the design strength of the fillet weld.
\(
\Phi v_w = phi 0.6 F_{tu} E_w k_r = 0.8 \veces 0.6 \veces 430 \, \texto{MPa} \veces 5.657 \, \texto{mm} \veces 1 = 1.1676 \, \texto{kN / mm}
\)
In addition to checking the weld, we also need to verify the resistance of the base metal against the applied tension force to ensure it does not govern the failure mode.
\(
\A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{wbm} = \phi \left( \min izquierda( F_{y_col} A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{columna}, F_{y_bp} A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{pb} \verdad) \verdad)
\)
\(
\A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{wbm} = 0.9 \veces left( \min izquierda( 350 \, \texto{MPa} \veces 8 \, \texto{mm}, 250 \, \texto{MPa} \veces 20 \, \texto{mm} \verdad) \verdad) = 2.52 \, \texto{kN / mm}
\)
En este caso, the weld resistance governs over the base metal resistance.
Ya que 0.13514 kN / mm < 1.1676 kN / mm, La capacidad de soldadura es suficiente.
Cheque #2: Calculate base plate flexural yielding capacity due to tension load
Utilizando la load per anchor and the offset distance from the center of the anchor to the face of the column (serving as the load eccentricity), the moment applied to the base plate can be calculated using a viga voladiza assumption.
\(
M^* = T_{tu,ancla} e = 12.5 \, \texto{kN} \veces 62.5 \, \texto{mm} = 781.25 \, \texto{kN} \cdot \text{mm}
\)
próximo, using the calculated effective weld length from the previous check as the bending width, podemos calcular el Calcula la capacidad de carga of the base plate using AISC 360-22, Ecuación 2-1:
\(
\phi M_s = \phi Z_{efecto} F_{y_bp} = 0.9 \veces 9250 \, \texto{mm}^3 \times 250 \, \texto{MPa} = 2081.2 \, \texto{kN} \cdot \text{mm}
\)
Dónde,
\(
Z_{efecto} = frac{l_{efecto} (A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{pb})^ 2}{4} = frac{92.5 \, \texto{mm} \veces (20 \, \texto{mm})^ 2}{4} = 9250 \, \texto{mm}^ 3
\)
Ya que 781.25 kN-mm < 2081.2 kN-mm, the base plate flexural yielding capacity is suficiente.
Cheque #3: Calculate anchor rod tensile capacity
To evaluate the tensile capacity of the anchor rod, we refer to AS 5216:2021 Cláusula 6.2.2 y AS 4100:2020 Cláusula 9.2.2.2.
primero, Determinamos el área de tensión de tracción of the threaded portion of the rod, siguiente AS 4100:2020 Cláusula 7.2 y AS 1275–1985 Clause 1.7.
\(
A_n = \frac{\pi}{4} \izquierda( \frac{d_a}{\texto{mm}} – 0.9382 P \right)^ 2 \, \texto{mm}^2 = \frac{\pi}{4} \veces left( \frac{16 \, \texto{mm}}{1 \, \texto{mm}} – 0.9382 \veces 2 \verdad)^2 \times 1 \, \texto{mm}^2 = 156.67 \, \texto{mm}^ 2
\)
Utilizando AS 4100:2020 Cláusula 9.2.2, calculamos el nominal tension capacity of the bolt based on the tensile stress area and the material strength.
\(
NORTE_{tf} = A_n F_{u\_anc} = 156.67 \, \texto{mm}^2 \times 800 \, \texto{MPa} = 125.33 \, \texto{kN}
\)
We then apply the appropriate resistance factor to obtain the design anchor capacity in tension.
\(
\phi N_{Rk,s} = \phi N_{tf} = 0.8 \veces 125.33 \, \texto{kN} = 100.27 \, \texto{kN}
\)
Recall the previously calculated tension load per anchor, and apply the prying increase factor if specified.
\(
N^* = p \left( \frac{N_X}{n_{a,t}} \verdad) = 1 \veces left( \frac{50 \, \texto{kN}}{4} \verdad) = 12.5 \, \texto{kN}
\)
Ya que 12.5 kN < 100.27 kN, la anchor rod tensile capacity is sufficient.
Cheque #4: Calculate concrete breakout capacity in tension
Before calculating the breakout capacity, we must first determine whether the member qualifies as a narrow member. De acuerdo a AS 5216:2021 Cláusula 6.2.3.8, the member meets the criteria for a narrow member. Por lo tanto, a modified effective embedment length must be used in the breakout capacity calculations. This adjustment also affects the characteristic spacing y characteristic edge distance, which must be modified accordingly.
Based on the narrow member criteria, la modified values for the anchor group are as follows:
- modified effective embedment length, \(h’_{ef} = 100 \, \texto{mm}\)
- modified characteristic spacing, \(s’_{cr} = 300 \, \texto{mm}\)
- modified characteristic edge distance, \(c’_{cr} = 150 \, \texto{mm}\)
Utilizando AS 5216: 2021 Cláusula 6.2.3.3, calculamos el reference projected concrete cone area para un solo ancla.
\(
A0_{c,norte} = left( s’_{cr,g1} \verdad)^2 = \left( 300 \, \texto{mm} \verdad)^2 = 90000 \, \texto{mm}^ 2
\)
De igual forma, calculamos el actual projected concrete cone area of the anchor group.
\(
UNA_{Carolina del Norte} = L_{Carolina del Norte} SI_{Carolina del Norte} = 450 \, \texto{mm} \veces 450 \, \texto{mm} = 202500 \, \texto{mm}^ 2
\)
Dónde,
\(
L_{Carolina del Norte} = min left( C_{izquierda,g1}, c’_{cr,g1} + r_{embed\_plate} \verdad) + \min izquierda( s_{suma,z,g1}, s’_{cr,g1} \cdot \left( n_{z,g1} – 1 \verdad) \verdad) + \min izquierda( C_{verdad,g1}, c’_{cr,g1} + r_{embed\_plate} \verdad)
\)
\(
L_{Carolina del Norte} = min left( 87.5 \, \texto{mm}, 150 \, \texto{mm} + 18 \, \texto{mm} \verdad) + \min izquierda( 275 \, \texto{mm}, 300 \, \texto{mm} \cdot (2 – 1) \verdad) + \min izquierda( 87.5 \, \texto{mm}, 150 \, \texto{mm} + 18 \, \texto{mm} \verdad)
\)
\(
L_{Carolina del Norte} = 450 \, \texto{mm}
\)
\(
SI_{Carolina del Norte} = min left( C_{superior,g1}, c’_{cr,g1} + r_{embed\_plate} \verdad) + \min izquierda( s_{suma,y,g1}, s’_{cr,g1} \cdot \left( n_{y,g1} – 1 \verdad) \verdad) + \min izquierda( C_{inferior,g1}, c’_{cr,g1} + r_{embed\_plate} \verdad)
\)
\(
SI_{Carolina del Norte} =\min \left( 150 \, \texto{mm}, 150 \, \texto{mm} + 18 \, \texto{mm} \verdad) + \min izquierda( 150 \, \texto{mm}, 300 \, \texto{mm} \cdot (2 – 1) \verdad) + \min izquierda( 150 \, \texto{mm}, 150 \, \texto{mm} + 18 \, \texto{mm} \verdad)
\)
\(
SI_{Carolina del Norte} = 450 \, \texto{mm}
\)
El embedded plate effective radius is used to provide additional capacity for concrete breakout. To determine this, add the thickness of the embedded plate to half of the anchor diameter.
próximo, we evaluate the characteristic strength of a single anchor using AS 5216:2021 Eq. 6.2.3.2
\(
N0_{Rk,c} = k_1 \sqrt{\frac{f’_c}{\texto{MPa}}} \izquierda( \frac{h’_{ef,g1}}{\texto{mm}} \verdad)^{1.5} \, \texto{norte}
\)
\(
N0_{Rk,c} = 8.9 \veces sqrt{\frac{28 \, \texto{MPa}}{1 \, \texto{MPa}}} \veces left( \frac{100 \, \texto{mm}}{1 \, \texto{mm}} \verdad)^{1.5} \veces 0.001 \, \texto{kN} = 47.094 \, \texto{kN}
\)
Dónde,
- \(Suma de fuerzas de tensión de anclajes con área de cono de ruptura de concreto común{1} = 8.9\) para anclajes empotrados
Ahora, we assess the effects of geometry by calculating the necessary parámetros for breakout resistance.
The shortest edge distance of the anchor group is determined as:
\(
C_{min,norte} = min left( C_{izquierda,g1}, C_{verdad,g1}, C_{superior,g1}, C_{inferior,g1} \verdad) = min left( 87.5 \, \texto{mm}, 87.5 \, \texto{mm}, 150 \, \texto{mm}, 150 \, \texto{mm} \verdad) = 87.5 \, \texto{mm}
\)
De acuerdo a AS 5216:2021 Eq. 6.2.3.4, the value for the parameter accounting for distribution of stress in concrete is:
\(
\Psi_{s,norte} = min left( 0.7 + 0.3 \izquierda( \frac{C_{min,norte}}{c’_{cr,g1}} \verdad), 1.0 \verdad) = min left( 0.7 + 0.3 \veces left( \frac{87.5 \, \texto{mm}}{150 \, \texto{mm}} \verdad), 1 \verdad) = 0.875
\)
El shell spalling effect is accounted for using AS 5216:2021 Ecuación 6.2.3.5, donación:
\(
\Psi_{re,norte} = min left( 0.5 + \frac{h’_{ef,g1}}{\texto{mm} \cdot 200}, 1.0 \verdad) = min left( 0.5 + \frac{100 \, \texto{mm}}{1 \, \texto{mm} \cdot 200}, 1 \verdad) = 1
\)
Adicionalmente, both the eccentricity factor y el compression influence factor are taken as:
\(
\Psi_{CE,norte} = 1
\)
\(
\Psi_{M,norte} = 1
\)
We then combine all these factors and apply AS 5216:2021 Ecuación 6.2.3.1 to evaluate the design concrete cone breakout resistance for the anchor group:
\(
\phi N_{Rk,c} = phi_{Mc} N0_{Rk,c} \izquierda( \frac{UNA_{Carolina del Norte}}{A0_{c,norte}} \verdad) \Psi_{s,norte} \Psi_{re,norte} \Psi_{CE,norte} \Psi_{M,norte}
\)
\(
\phi N_{Rk,c} = 0.6667 \veces 47.094 \, \texto{kN} \veces left( \frac{202500 \, \texto{mm}^ 2}{90000 \, \texto{mm}^ 2} \verdad) \veces 0.875 \veces 1 \veces 1 \veces 1 = 61.814 \, \texto{kN}
\)
El total applied tension load on the anchor group is calculated by multiplying the tension load per anchor by the number of anchors, with the prying increase factor applied as needed:
\(
N^* = p \left( \frac{N_X}{n_{a,t}} \verdad) n_{a,g1} = 1 \veces left( \frac{50 \, \texto{kN}}{4} \verdad) \veces 4 = 50 \, \texto{kN}
\)
Ya que 50 kN < 61.814 kN the concrete breakout capacity is suficiente.
Cheque #5: Calculate anchor pullout capacity
El pullout capacity of an anchor is governed by the resistance at its embedded end. primero, we compute the maximum anchor head dimension effective for pull out resistance, según por AS 5216:2021 Cláusula 6.3.4.
\(
D_{h,\texto{max}} = min left( B_{embed\_plate}, 6 \izquierda( A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{embed\_plate} \verdad) + d_a \right) = min left( 70 \, \texto{mm}, 6 \veces (10 \, \texto{mm}) + 16 \, \texto{mm} \verdad) = 70 \, \texto{mm}
\)
próximo, we calculate the net bearing area of the rectangular embedded plate using:
\(
A_h = \left( D_{h,\texto{max}}^2 Derecha) – UNA_{vara} = left( (70 \, \texto{mm})^2 Derecha) – 201.06 \, \texto{mm}^2 = 4698.9 \, \texto{mm}^ 2
\)
Dónde,
\(
UNA_{vara} = frac{\pi}{4} (d_a)^2 = \frac{\pi}{4} \veces (16 \, \texto{mm})^2 = 201.06 \, \texto{mm}^ 2
\)
We then calculate the design basic anchor pullout strength usando AS 5216:2021 Cláusula 6.3.4:
\(
NORTE_{Rk,pag} = phi_{Mc} k_2 A_h \left( F’_C Derecha) = 0.6667 \veces 7.5 \veces 4698.9 \, \texto{mm}^2 \times (28 \, \texto{MPa}) = 657.88 \, \texto{kN}
\)
Recall the previously calculated tension load per anchor:
\(
N^* = p \left( \frac{N_X}{n_{a,t}} \verdad) = 1 \veces left( \frac{50 \, \texto{kN}}{4} \verdad) = 12.5 \, \texto{kN}
\)
Ya que 12.5 kN < 657.88 kN, the anchor pullout capacity is suficiente.
Cheque #6: Calculate side-face blowout capacity in Y-direction
Let’s consider Side-Face Blowout Anchor Group 1 for the capacity calculation. Referring to the Anchor Data Summary, Anchor IDs 3 y 4 are part of SFy Group 1.
We begin by calculating the edge distance to the failure edge.
\(
C_{z,\texto{min}} = min left( C_{\texto{izquierda},g1}, C_{\texto{verdad},g1} \verdad) = min left( 87.5 \, \texto{mm}, 362.5 \, \texto{mm} \verdad) = 87.5 \, \texto{mm}
\)
próximo, we determine the edge distance to the orthogonal edge.
\(
C_{y,\texto{min}} = min left( C_{\texto{superior},g1}, C_{\texto{inferior},g1} \verdad) = min left( 150 \, \texto{mm}, 150 \, \texto{mm} \verdad) = 150 \, \texto{mm}
\)
Utilizando AS 5216:2021 Cláusula 6.2.7.3, let’s calculate the reference projected area of a single fastener.
\(
A0_{c,Nótese bien} = left( 4 C_{z,\texto{min}} \verdad)^2 = \left( 4 \veces 87.5 \, \texto{mm} \verdad)^2 = 122500 \, \texto{mm}^ 2
\)
Since we are checking the capacity of the anchor group, let’s get the actual projected area of the anchor group using AS 5216:2021 Cláusula 6.2.7.2.
\(
UNA_{Carolina del Norte} = B_{c,Nótese bien} se requiere realizar una sumatoria de momentos con respecto al punto mencionado de todas las cargas verticales{c,Nótese bien} = 450 \, \texto{mm} \veces 325 \, \texto{mm} = 146250 \, \texto{mm}^ 2
\)
Dónde,
\(
SI_{c,Nótese bien} = min left( 2 C_{z,\texto{min}}, C_{\texto{superior},g1} \verdad) + s_{\texto{suma},y,g1} + \min izquierda( 2 C_{z,\texto{min}}, C_{\texto{inferior},g1} \verdad)
\)
\(
SI_{c,Nótese bien} = min left( 2 \veces 87.5 \, \texto{mm}, 150 \, \texto{mm} \verdad) + 150 \, \texto{mm} + \min izquierda( 2 \veces 87.5 \, \texto{mm}, 150 \, \texto{mm} \verdad) = 450 \, \texto{mm}
\)
\(
se requiere realizar una sumatoria de momentos con respecto al punto mencionado de todas las cargas verticales{c,Nótese bien} = 2 C_{z,\texto{min}} + \izquierda( \min izquierda( A continuación se muestra un ejemplo de algunos cálculos de placa base australianos que se usan comúnmente en el diseño de placa base{\texto{sobre}} – h_{\texto{ef}}, 2 C_{z,\texto{min}} \verdad) \verdad)
\)
\(
se requiere realizar una sumatoria de momentos con respecto al punto mencionado de todas las cargas verticales{c,Nótese bien} = 2 \veces 87.5 \, \texto{mm} + \izquierda( \min izquierda( 400 \, \texto{mm} – 250 \, \texto{mm}, 2 \veces 87.5 \, \texto{mm} \verdad) \verdad) = 325 \, \texto{mm}
\)
In computing the characteristic concrete blow-out strength of an individual anchor, usaremos AS 5216:2021 Cláusula 6.2.7.2.
\(
N0_{Rk,cb} = k_5 \left( \frac{C_{z,\texto{min}}}{\texto{mm}} \verdad) \sqrt{\frac{A_h}{\texto{mm}^ 2}} \sqrt{\frac{f’_c}{\texto{MPa}}} \, norte
\)
\(
N0_{Rk,cb} = 8.7 \veces left( \frac{87.5 \, \texto{mm}}{1 \, \texto{mm}} \verdad) \veces sqrt{\frac{4698.9 \, \texto{mm}^ 2}{1 \, \texto{mm}^ 2}} \veces sqrt{\frac{28 \, \texto{MPa}}{1 \, \texto{MPa}}} \veces 0.001 \, \texto{kN}
\)
\(
N0_{Rk,cb} = 276.13 \, \texto{kN}
\)
Dónde,
- \(Suma de fuerzas de tensión de anclajes con área de cono de ruptura de concreto común{5} = 8.7\) para hormigón fisurado
- \(Suma de fuerzas de tensión de anclajes con área de cono de ruptura de concreto común{5} = 12.2\) for uncracked concrete
Luego, we will get the side-face blowout parameters.
The parameter accounting for the disturbance of the distribution of stresses in concrete can be calculated from AS 5216:2021 Cláusula 6.2.7.4.
\(
\Psi_{s,Nótese bien} = min left( 0.7 + 0.3 \izquierda( \frac{C_{y,\texto{min}}}{2 C_{z,\texto{min}}} \verdad), 1.0 \verdad)
\)
\(
\Psi_{s,Nótese bien} = min left( 0.7 + 0.3 \veces left( \frac{150 \, \texto{mm}}{2 \veces 87.5 \, \texto{mm}} \verdad), 1 \verdad) = 0.95714
\)
The equation from AS 5216:2021 Cláusula 6.2.7.5 is then used to get the parameter accounting for the group effect.
\(
\Psi_{gramo,Nótese bien} = max left( \sqrt{n_{y,g1}} + \izquierda( 1 – \sqrt{n_{y,g1}} \verdad) \izquierda( \frac{\min izquierda( s_{y,g1}, 4 C_{z,\texto{min}} \verdad)}{4 C_{z,\texto{min}}} \verdad), 1.0 \verdad)
\)
\(
\Psi_{gramo,Nótese bien} = max left( \sqrt{2} + \izquierda( 1 – \sqrt{2} \verdad) \veces left( \frac{\min izquierda( 150 \, \texto{mm}, 4 \veces 87.5 \, \texto{mm} \verdad)}{4 \veces 87.5 \, \texto{mm}} \verdad), 1 \verdad)
\)
\(
\Psi_{gramo,Nótese bien} = 1.2367
\)
Finalmente, in reference to AS 5216:2021 Eq. 6.2.7 for headed anchor rods, la design concrete blow-out resistance es:
\(
\phi N_{Rk,cb} = \phi_M N0_{Rk,cb} \izquierda( \frac{UNA_{Carolina del Norte}}{A0_{c,Nótese bien}} \verdad) \Psi_{s,Nótese bien} \Psi_{gramo,Nótese bien} \Psi_{CE,norte}
\)
\(
\phi N_{Rk,cb} = 0.6667 \veces 276.13 \, \texto{kN} \veces left( \frac{146250 \, \texto{mm}^ 2}{122500 \, \texto{mm}^ 2} \verdad) \veces 0.95714 \veces 1.2367 \veces 1 = 260.16 \, \texto{kN}
\)
For this anchor group, only two (2) anchors belong to group. Por lo tanto, la design tension force for the anchor group is:
\(
N^* = p \left( \frac{N_X}{n_{a,t}} \verdad) n_{y,g1}
\)
\(
N^* = 1 \veces left( \frac{50 \, \texto{kN}}{4} \verdad) \veces 2 = 25 \, \texto{kN}
\)
Ya que 25 kN < 260.16 kN, the concrete side-face blowout along Y-direction is suficiente.
Side-Face Blowout Anchor Group 2 can also be used and will yield the same result, since the design is symmetric.
Cheque #7: Calculate side-face blowout capacity in Z-direction
This calculation is not applicable for failure along the Z-direction, as the edge distance to the sides exceeds half of the effective embedment length.
Resumen de diseño
El Software de diseño de placa base de SkyCiv can automatically generate a step-by-step calculation report for this design example. También proporciona un resumen de los controles realizados y sus proporciones resultantes, Hacer que la información sea fácil de entender de un vistazo. A continuación se muestra una tabla de resumen de muestra, que se incluye en el informe.
Informe de muestra de SkyCiv
haga clic aquí Para descargar un informe de muestra.
Comprar software de placa base
Compre la versión completa del módulo de diseño de la placa base por sí solo sin ningún otro módulo SkyCiv. Esto le da un conjunto completo de resultados para el diseño de placa base, incluyendo informes detallados y más funcionalidad.