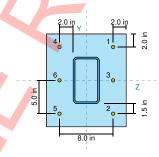


Concrete Properties:


Symbol	Description	Value			
B_{conc}	Concrete width	12.000 in			
L_{conc}	onc Concrete length				
t_{conc}	Concrete thickness	10.000 in			
A_{conc}	Concrete plan area	168.000 in ²			
f_c	Concrete compressive strength (3000)	3.000 ksi			
λ	Factor for normal-weight concrete	1.000			
_	Concrete assumption: cracked or uncracked	Cracked			

Anchor Information:

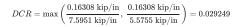
Symbol	Description	Value	
d_a	Anchor rod diameter	0.500 in	
h_{ef}	Anchor rod effective embedment length	8.000 in	
e_h	Anchor hook length	2.000 in	
F_{y_anc}	Anchor rod yield stress (A325)	92.000 ksi	
F_{u_anc}	Anchor rod tensile stress (A325)	120.000 ksi	
t_{pw}	Plate washer thickness	0.250 in	

Anchor Layout:

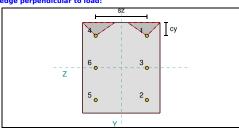
Symbol	Description	Value
n_a	Total number of anchor rods	6.000
s_z	Spacing of anchor rods along Z-axis	8.000 in
s_y	Spacing of anchor rods along Y-axis	5.000 in
$l_{edge,z}$	Base plate edge distance along Z-axis	2.000 in
$l_{edge,y}$	Base plate edge distance along Y-axis	2.000 in

Anchor Data Summary:

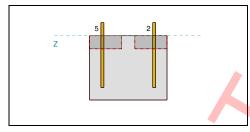
ID	Z (in)	Y (in)
1	4.000	5.000
2	4.000	-5.000
3	4.000	0.000
4	-4.000	5.000
5	-4.000	-5.000
6	-4.000	0.000

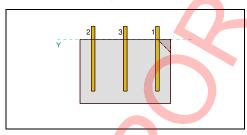


	ID	Shear Di Resis		Breakout (Vy Shear)	Breakout (Vz Shear)	Pryout (Vy She	: ar) (\	Pryout Vz Shear
	1	All Load D	irections	Single	BO Vz Group 1	PO Group	1 P	O Group 1
	2	All Load D	irections	Single	BO Vz Group 1	PO Group	1 P	O Group 1
	3	All Load D	irections	Single	BO Vz Group 1	PO Group	1 P	O Group 1
	4	All Load D	irections	Single	BO Vz Group 2	PO Group	1 P	O Group 1
	5	All Load D	irections	Single	BO Vz Group 2	PO Group	1 P	O Group 1
	6	All Load D	irections	Single	BO Vz Group 2	PO Group	1 P	O Group 1
Weld Properties:		Symbol		Descri	ption	Va	ue	1
		Type	Weld Typ		<u>, , , , , , , , , , , , , , , , , , , </u>	Fil	et	
		W	Fillet we	ld size		0.2	50 in	
		E_w	Weld thr	roat		0.1	77 in	
		F_{exx}	Filler me	etal classificati	on strength (E70	(x) 70.00	00 ksi]
		S	umma	ary of De	etailing Ch	ecks		
Check Na	ıme		Din	nensions (Mi	n/Max/Actual)	Stat	ıs	
Weld Size Requirement			Min: 0.1 in	19 in, Max: 0.7	5 in, Actual: 0.25	PAS	SA	AISC 360-22
Anchor Clearance			Min: 1.1	19 in in, Actual	l: 1.75 in	PAS	s s	SkyCiv Reco
Base Plate Edge Distance			Min: 0.8	31 in in, Actual	l: 2.00 in	PAS	S A	AISC 360-22
Minimum Number of Anchor	s		Min: 4.0	00, Actual: 6.00	0	PAS		AISC Design 4.2
Min. Anchor Spacing to Prev	ent Concr	ete	Min: 2.0)5 in in, Actual	l: 5.00 in	PAS	S A	ACI 318-19
Splitting								


The design geometry meets requirements!

 $DCR = \max\left(\frac{\mathbf{r}_{\mathrm{u}}}{\phi \mathbf{r}_{\mathrm{nbm}}}, \frac{\mathbf{r}_{\mathrm{u}}}{\phi \mathbf{r}_{\mathrm{n}}}\right)$




Check No. 2: Concrete Breakout Capacity (Vy Shear)
For breakout capacity on failure edge perpendicular to load:

PLAN VIEW

FRONT VIEW

SIDE VIEW

Calculate shear load per single anchor

 $V_y=2\ \mathrm{kip}$ - Vy shear load

 $n_a=6$ - Total number of anchor rods

 $V_{fa\perp}$ - Required concrete breakout shear strength of a single anchor with failure edge perpendicular to load

$$V_{fa\perp} = rac{V_y}{n_a} = rac{2 ext{ kip}}{6} = 0.33333 ext{ kip}$$

ACI 318-19 Clause 17.7.2.1.2

Determine if the support is a narrow concrete member The support is not a narrow member.

I	Symbol	Description	Value						
	$c_{left,s1}$	$f_{t,s1}$ Single anchor concrete edge distance (left)							
	$c_{right,s1}$	Single anchor concrete edge distance (right)	2.000 in						
1	$c_{top,s1}$	Single anchor concrete edge distance (top)	2.000 in						
١	$c_{bottom,s1}$	Single anchor concrete edge distance (bottom)	12.000 in						
	t_{conc}	Concrete thickness	10.000 in						
	$c_{a1,s1}$	Single anchor distance to failure edge (+Vy shear)	2.000 in						
l		Narrow Member	FALSE						

Calculate maximum projected area for a single anchor

 $c_{a1,s1}=2~{
m in}$ - <code>Single</code> anchor distance to failure edge (+Vy shear)

Calculate width of actual projected area on failure surface

ACI 318-19 Eq. 17.7.2.1.3 A_{Vco} - Maximum projected area for a single anchor

$$A_{Vco} = 4.5 (c_{a1,s1})^2 = 4.5 imes (2 ext{ in})^2 = 18 ext{ in}^2$$

ACI 318-19 Clause 17.7.2.1.1

ACI 318-19 Clause 17.7.2.1.2

 B_{Vc} - Actual length of concrete cone for a single anchor

$$B_{Vc} = \min \left({{
m{c}}_{{
m{left}},{
m{s1}}}},\; 1.5{{
m{c}}_{{
m{a1}},{
m{s1}}}}
ight) + \min \left({{
m{c}}_{{
m{right}},{
m{s1}}}},\; 1.5{{
m{c}}_{{
m{a1}},{
m{s1}}}}
ight)$$

$$B_{Vc} = \min \left(10 \text{ in}, \ 1.5 \times 2 \text{ in}\right) + \min \left(2 \text{ in}, \ 1.5 \times 2 \text{ in}\right) = 5 \text{ in}$$

ACI 318-19 Clause 17.7.2.1.1

Calculate height of actual projected area on failure surface H_{Vc} - Actual height of projected area

 $H_{Vc} = \min \left(1.5 \mathrm{c}_{\mathrm{al,s1}}, \; \mathrm{t}_{\mathrm{conc}}\right) = \min \left(1.5 \times 2 \; \mathrm{in}, \; 10 \; \mathrm{in}\right) = 3 \; \mathrm{in}$

Calculate actual projected area

ACI 318-19 Clause

17.7.2.1.1 A_{Vc} - Actual projected area $A_{Vc}=B_{Vc}H_{Vc}=5 ext{ in} imes 3 ext{ in}=15 ext{ in}^2$ Calculate modification factor for lightweight concrete ACI 318-19 Table 17.2.4.1 $\lambda_a=1.0\lambda=1\times 1=1$ ACI 318-19 Clause 17.7.2.2.1 $\emph{l}_\emph{e}$ - Load bearing length (equal to embedment height) $l_e=h_{ef}=8~{
m in}$ Calculate basic single anchor breakout strength $f_c^{\,\prime}=3~\mathrm{ksi}$ - Concrete compressive strength (3000) $d_a=0.5~{
m in}$ - Anchor rod diameter ACI 318-19 Eq. 17.7.2.2.1a ${\cal V}_{b1}$ - Basic single anchor breakout strength condition 1 $V_{b1} = 7igg(rac{\min\left(\mathrm{l_e,\ 8d_a}
ight)}{d_a}igg)^{0.2}\sqrt{rac{d_a}{in}}\lambda_a\sqrt{rac{f_c'}{psi}}igg(rac{c_{a1,s1}}{in}igg)^{1.5}lbf$ $V_{b1} = 7 \times \left(\frac{\min{(8 \text{ in, } 8 \times 0.5 \text{ in})}}{0.5 \text{ in}}\right)^{0.2} \times \sqrt{\frac{0.5 \text{ in}}{1 \text{ in}}} \times 1 \times \sqrt{\frac{3 \text{ ksi}}{0.001 \text{ ksi}}} \times \left(\frac{2 \text{ in}}{1 \text{ in}}\right)^{1.5} \times 0.001 \text{ kip}$ $V_{b1}=1.1623~\rm kip$ V_{b2} - Basic single anchor breakout strength condition 2 $V_{b2}=9\lambda_a\sqrt{rac{f_c^{'}}{psi}}\Big(rac{c_{a1,s1}}{in}\Big)^{1.5}lbf$ $V_{b2} = 9 \times 1 \times \sqrt{\frac{3 \text{ ksi}}{0.001 \text{ ksi}}} \times \left(\frac{2 \text{ in}}{1 \text{ in}}\right)^{1.5} \times 0.001 \text{ kip} = 1.3943 \text{ kip}$ ACI 318-19 Clause 17.7.2.2.1

$$V_b = \min{({
m V_{b1}}\,,\,{
m V_{b2}})} = \min{(1.1623~{
m kip},\,1.3943~{
m kip})} = 1.1623~{
m kip}$$

Calculate edge effect factor $c_{a2,s1}=2~{
m in}$ - Single anchor distance to parallel edge (+Vy shear)

 $\Psi_{ed,V}$ - Breakout edge effect factor

 $\Psi_{cd,V} = \min\left(1.0,\ 0.7 + 0.3\left(\frac{c_{a2,\mathbf{s}1}}{1.5c_{a1,\mathbf{s}1}}\right)\right) = \min\left(1,\ 0.7 + 0.3 \times \left(\frac{2\ \mathrm{in}}{1.5 \times 2\ \mathrm{in}}\right)\right) = 0.9$

Calculate thickness factor

ACI 318-19 Eq. 17.7.2.6.1 $\Psi_{h,V} = \max\left(\sqrt{\frac{1.5c_{a1,s1}}{t_{conc}}},\ 1.0\right) = \max\left(\sqrt{\frac{1.5\times2~\mathrm{in}}{10~\mathrm{in}}},\ 1\right) = 1$

 $\Psi_{h,V} = \max\left(\sqrt{\frac{1}{10 \text{ in}}}, 1.0\right) = \max\left(\sqrt{\frac{10 \text{ in}}{10}}, 1\right) = \frac{1}{10}$

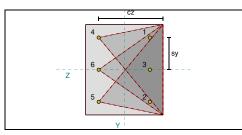
Calculate concrete breakout capacity at the perpendicular edge $\phi=0.65$ - Concrete shear resistance factor

ACI 318-19 Clause 17.7.2.5.1 $\Psi_{c,V} = 1 \text{ - Breakout cracking factor (shear)}$ ACI 318-19 Clause 17.7.2.1(a) $\phi V_{cb\perp} \text{ - Design concrete breakout strength in shear of a single anchor (perpendicular edge)}$ $\phi V_{cb\perp} = \phi \left(\frac{A_{Vc}}{A_{Vco}}\right) \Psi_{ed,V} \Psi_{c,V} \Psi_{b,V} V_{b}$

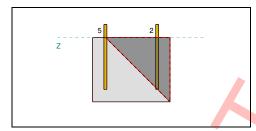
 $\phi V_{cb\perp} = 0.65 imes \left(rac{15 ext{ in}^2}{18 ext{ in}^2}
ight) imes 0.9 imes 1 imes 1.1623 ext{ kip} = 0.56661 ext{ kip}$

ACI 318-19 Clause 17.7.2.1(a) $\phi V_{cb\perp}$ - Design concrete breakout strength in shear of a single anchor (perpendicular edge)

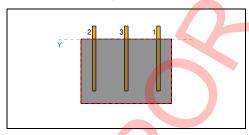
 $\phi V_{cb\perp} = \phi \left(rac{A_{Vc}}{A_{Vco}}
ight) \Psi_{cd,V} \Psi_{c,V} \Psi_{h,V} V_b$


 $\phi V_{cb\perp} = 0.65 imes \left(rac{15 ext{ in}^2}{18 ext{ in}^2}
ight) imes 0.9 imes 1 imes 1.1623 ext{ kip} = 0.56661 ext{ kip}$

For breakout capacity on failure edge parallel to load: Determine cases:


Symbol	mbol Description					
$s_{z,outer}$	$s_{z,outer}$ Spacing of outer anchor rods along Z-axis					
$c_{a1,g1}$	$c_{a1,g1}$ Anchor group distance to failure edge (+Vz shear)					
	Is welded plate washer used? Applicable Cases					

ACI 318-19 Clause 17.7.2.4.1a and 17.7.2.4.1b


Calculations for Case 2

PLAN VIEW

FRONT VIEW

SIDE VIEW

Calculate total shear load on anchor group

 $V_y=2\ \mathrm{kip}$ - Vy shear load

Assume Vy load is acting perpendicular to the anchors along the failure edge.

 $V_{fa\parallel,case2}$ - Required concrete breakout shear strength of anchor group with failure edge parallel to load

$$V_{fa\parallel,case2}=V_y=2~{
m kip}$$

ACI 318-19 Clause 17.7.2.1.2 The s

Determine if the support is a narrow concrete member

The support is classified as a narrow member. The modified values below will be used throughout the calculations.

Symbol	Description	Value					
$c_{left,g2}$	Anchor group BO Vz 2 concrete edge distance (left)	2.000 in					
$c_{right,g2}$	Anchor group BO Vz 2 concrete edge distance (right)						
$c_{top,g2}$	Anchor group BO Vz 2 concrete edge distance (top)						
$c_{bottom,g2}$	Anchor group BO Vz 2 concrete edge distance (bottom)	2.000 in					
t_{conc}	Concrete thickness						
s_y	Spacing of anchor rods along Y-axis						
$c_{a1,g2}$	Rear anchor group distance to failure edge (+Vz shear)						
	Narrow Member						
$c_{a1,g2}^{\prime}$	Rear anchor group modified distance to failure edge (+Vz shear)						

Calculate maximum projected area for a single anchor

 $c_{a1,g2}^{\prime}=6.6667~\mathrm{in}$ - Rear anchor group modified distance to failure edge (+Vz shear)

ACI 318-19 Eq. 17.7.2.1.3 A_{Vco} - Maximum projected area for a single anchor

$$A_{Vco} = 4.5 \Big(c_{a1,g2}'\Big)^2 = 4.5 imes (6.6667 ext{ in})^2 = 200 ext{ in}^2$$

Calculate width of actual projected area on failure surface

 $s_{sum,y,g2}=10~{
m in}$ - Anchor group BO Vz 2 sum of spacing along Y-axis

 $n_{y,g2}=3$ - Number of anchors along Y-axis for anchor group BO Vz 2

ACI 318-19 Clause B_{Vc} - Actual width of failure surface for an anchor group

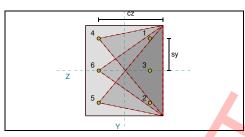
$$B_{Vc} = \min \left(c_{bottom,g2}, \ 1.5c_{a1,g2}' \right) + \left(\min \left(s_{sum,y,g2}, \ 3c_{a1,g2}' \left(n_{y,g2} - 1 \right) \right) \right) + \min \left(c_{top,g2}, \ 1.5c_{a1,g2}' \right)$$

$$B_{Vc} = \min{(2~\text{in},~1.5 \times 6.6667~\text{in})} + (\min{(10~\text{in},~3 \times 6.6667~\text{in} \times (3-1))}) + \min{(2~\text{in},~1.5 \times 6.6667~\text{in})}$$

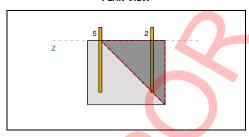
Calculation for critical anchor group: Anchor Group BO Vz 2.

ACI 318-19 Clause 17.7.2.1.2

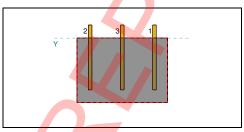
	$B_{Vc}=14~ m in$
ACI 318-19 Clause 17.7.2.1.1	Calculate height of actual projected area on failure surface H_{Vc} - Actual height of projected area
	$H_{Vc} = \min \left(1.5 ext{c}'_{ ext{a1,g2}}, \; ext{t}_{ ext{conc}} ight) = \min \left(1.5 imes 6.6667 \; ext{in}, \; 10 \; ext{in} ight) = 10 \; ext{in}$
ACI 318-19 Clauce	Calculate actual projected area
ACI 318-19 Clause 17.7.2.1.1	A_{Vc} - Actual projected area $A_{Vc}=B_{Vc}H_{Vc}=14 ext{ in} imes 10 ext{ in}=140 ext{ in}^2$
	1,000,000
	Calculate modification factor for lightweight concrete $\lambda=1$ - Factor for normal-weight concrete
ACI 318-19 Table 17.2.4.1	λ_a - Modification factor for lightweight concrete
	$\lambda_a = 1.0\lambda = 1 imes 1 = 1$
	Calculate load bearing length of the anchor $h_{ef}=8~{ m in}$ - Anchor rod effective embedment length
ACI 318-19 Clause 17.7.2.2.1	l_e - Load bearing length (equal to embedment height)
	$l_e=h_{ef}=8~{ m in}$
	Calculate basic single anchor breakout strength
	$f_c^\prime=3$ ksi - Concrete compressive strength (3000) $d_a=0.5~{ m in}$ - Anchor rod diameter
ACI 318-19 Eq. 17.7.2.2.1a	V_{b1} - Basic single anchor breakout strength condition 1
	$V_{b1} = 7igg(rac{\min\left(ext{l}_{ ext{e}}, \ 8 ext{d}_{ ext{a}} ight)}{d_{a}}igg)^{0.2}\sqrt{rac{d_{a}}{in}}\lambda_{a}\sqrt{rac{f_{c}^{'}}{psi}}igg(rac{c_{a1,g2}^{'}}{in}igg)^{1.5}lbf$
	$V_{b1} = 7 imes \left(rac{\min{(8 ext{ in, } 8 imes 0.5 ext{ in})}}{0.5 ext{ in}} ight)^{0.2} imes \sqrt{rac{0.5 ext{ in}}{1 ext{ in}}} imes 1 imes \sqrt{rac{3 ext{ ksi}}{0.001 ext{ ksi}}} imes \left(rac{6.6667 ext{ in}}{1 ext{ in}} ight)^{1.5} imes 0.001 ext{ kip}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$V_{b1}=7.0733~\mathrm{kip}$
ACI 318-19 Eq. 17.7.2.2.1b	V_{b2} - Basic single anchor breakout strength condition 2
	$V_{b2}=9\lambda_a\sqrt{rac{f_c^{'}}{psi}}igg(rac{c_{a1,g2}^{'}}{in}igg)^{1.5}lbf$
	$v_{b2} = 9\lambda_a \sqrt{psi} \left(\frac{in}{in}\right)$ tof
	$V_{b2} = 9 imes 1 imes \sqrt{rac{3 ext{ ksi}}{0.001 ext{ ksi}}} imes \left(rac{6.6667 ext{ in}}{1 ext{ in}} ight)^{1.5} imes 0.001 ext{ kip} = 8.4853 ext{ kip}$
	$v_{b2} = 9 \times 1 \times \sqrt{\frac{0.001 \text{ ksi}}{0.001 \text{ ksi}}} \times \sqrt{\frac{1 \text{ in}}{1 \text{ in}}} \times 0.001 \text{ kip} = 8.4853 \text{ kip}$
ACI 318-19 Clause 17.7.2.2.1	V_b - Basic single anchor breakout strength
	$V_b = \min{({ m V_{b1}},\ { m V_{b2}})} = \min{(7.0733\ { m kip},\ 8.4853\ { m kip})} = 7.0733\ { m kip}$
	Calculate eccentricity factor et . = 0 . Eccentricity of the resultant tensile force (assumed 0 for shear)
ACI 318-19 Clause 17.7.2.3.1	$c_N'=0$ - Eccentricity of the resultant tensile force (assumed 0 for shear) $\Psi_{ec,V}$ - Breakout eccentricity factor
17.7.2.3.1	
	$\Psi_{ec,V} = \min \left(1.0, \; rac{1}{1 + rac{2 ec{e}_{ m N}}{3 ec{e}_{ m d, \; 2}}} ight) = \min \left(1, \; rac{1}{1 + rac{2 imes 0}{3 imes 6.6667 \; m in}} ight) = 1$
	$1 + \frac{1}{3c'_{\text{al},82}} \int \frac{1}{3c'_{\text{al},$
ACI 318-19 Eq. 17.7.2.6.1	Calculate thickness factor $\Psi_{h,V}$ - Breakout thickness factor
	$\Psi_{h,V} = \max\left(\sqrt{rac{1.5c_{ m al,g2}'}{ m t_{conc}}}, \; 1.0 ight) = \max\left(\sqrt{rac{1.5 imes 6.6667 \; m in}{10 \; m in}}, \; 1 ight) = 1$
	$\Psi_{h,V} = \max\left(\sqrt{\frac{1}{t_{\text{conc}}}}, 1.0\right) = \max\left(\sqrt{\frac{10 \text{ in}}{10 \text{ in}}}, 1\right) = 1$
	Calculate concrete breakout capacity at the parallel edge
ACI 318-19 Clause	$\phi=0.65$ - Concrete shear resistance factor $\Psi_{c,V}=1$ - Breakout cracking factor (shear)
17.7.2.5.1 ACI 318-19 Clause 17.7.2.1(c)	$\Psi_{cd,V}=1$ - Breakout edge effect factor for parallel failure edge
17.7.2.1(c) ACI 318-19 Clause 17.7.2.1(c)	$\phi V_{cbg }$ - Design concrete breakout strength in shear of an anchor group (parallel edge)
27.7.2.2(0)	$\phi V_{cbg\parallel} = 2\phi \left(rac{A_{Vc}}{A_{Vco}} ight)\Psi_{ec,V}\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}V_{b}$
	$\left\langle arphi v_{cbg} ightert = 2 \phi \left(rac{1}{A_{Vco}} ight) \Psi_{cc,V} \Psi_{c,V} \Psi_{c,V} \Psi_{h,V} V_{b}$
	$\phi V_{cbg\parallel} = 2 imes 0.65 imes \left(rac{140 ext{ in}^2}{200 ext{ in}^2} ight) imes 1 imes 1 imes 1 imes 1.0733 ext{ kip} = 6.4367 ext{ kip}$
	(200 111)
	Result: DCR - Demand over capacity ratio, comparing two conditions:
4	$DCR = \max\left(rac{\mathrm{V_{fa\perp}}}{\phi\mathrm{V_{cb\perp}}}, rac{\mathrm{V_{fa\parallel, case2}}}{\phi\mathrm{V_{cbg\parallel}}} ight)$



DCP - may	(0.33333 kip	2 kip	_ 0.5000
DCh = max	$\frac{0.55555 \text{ kip}}{0.56661 \text{ kip}}$	$\overline{6.4367 \text{ kip}}$	= 0.5665


Check No. 3: Concrete Breakout Capacity (Vz Shear)
For breakout capacity on failure edge perpendicular to load:

Symbol	Description	Value					
$s_{z,outer}$	z,outer Spacing of outer anchor rods along Z-axis						
$c_{a1,g1}$	$c_{a1,g1}$ Anchor group distance to failure edge (+Vz shear)						
	Is welded plate washer used?						
	Applicable Cases	Case 2					


Calculations for Case 2

PLAN VIEW

FRONT VIEW

SIDE VIEW

Calculate total shear load on anchor group.

 $V_z=2~{
m kip}$ - Vz shear load

 $V_{fa\perp,case2}$ - Required concrete breakout shear strength of anchor group with failure edge perpendicular to load

$$V_{fa\perp,case2}=V_z=2~{\rm kip}$$

ACI 318-19 Clause 17.7.2.1.2

Determine if the support is a narrow concrete member

The support is classified as a narrow member. The modified values below will be used throughout the calculations.

	Symbol	Description	Value					
	$c_{left,g2}$	Anchor group BO Vz 2 concrete edge distance (left)	2.000 in					
١	$c_{right,g2}$	c _{right,g2} Anchor group BO Vz 2 concrete edge distance (right)						
1	$c_{top,g2}$	Anchor group BO Vz 2 concrete edge distance (top)	2.000 in					
	$c_{bottom,g2}$	cbottom,g2 Anchor group BO Vz 2 concrete edge distance (bottom)						
	t_{conc}	t _{conc} Concrete thickness						
	s_y	s_y Spacing of anchor rods along Y-axis						
	$c_{a1,g2}$	$c_{a1,g2}$ Rear anchor group distance to failure edge (+Vz shear)						
		Narrow Member						
	$c_{a1,g2}^{\prime}$	Rear anchor group modified distance to failure edge (+Vz shear)	6.667 in					

Calculate maximum projected area for a single anchor

 $c_{a1,g2}^{\prime}=6.6667~\mathrm{in}$ - Rear anchor group modified distance to failure edge (+Vz shear)

 A_{Vco} - Maximum projected area for a single anchor

 $A_{Vco} = 4.5 \Big(c_{a1,g2}'\Big)^2 = 4.5 imes (6.6667 ext{ in})^2 = 200 ext{ in}^2$

Calculate width of actual projected area on failure surface $s_{sum,y,g2}=10~{
m in}$ - Anchor group BO Vz 2 sum of spacing along Y-axis $n_{y,g2}=3$ - Number of anchors along Y-axis for anchor group BO Vz 2 ACI 318-19 Clause 17.7.2.1.1 B_{Vc} - Actual width of failure surface for an anchor group $B_{Vc} = \min \left(c_{bottom,g2}, \ 1.5c_{a1,g2}' \right) + \left(\min \left(s_{sum,y,g2}, \ 3c_{a1,g2}' \left(n_{y,g2} - 1 \right) \right) \right) + \min \left(c_{top,g2}, \ 1.5c_{a1,g2}' \right)$ $B_{Vc} = \min \left(2 \text{ in, } 1.5 \times 6.6667 \text{ in} \right) + \left(\min \left(10 \text{ in, } 3 \times 6.6667 \text{ in} \times (3-1) \right) \right) + \min \left(2 \text{ in, } 1.5 \times 6.6667 \text{ in} \right)$ $B_{Vc} = 14$ in Calculate height of actual projected area on failure surface ACI 318-19 Clause 17.7.2.1.1 H_{Vc} - Actual height of projected area $H_{Vc} = \min \left(1.5 c_{
m a1, g2}', \; {
m t_{conc}}
ight) = \min \left(1.5 imes 6.6667 \; {
m in}, \; 10 \; {
m in}
ight) = 10 \; {
m in}$ ACI 318-19 Clause 17.7.2.1.1 $A_{Vc} = B_{Vc}H_{Vc} = 14 \text{ in} \times 10 \text{ in} = 140 \text{ in}^2$ Calculate modification factor for lightweight concrete ACI 318-19 Table 17.2.4.1 $\lambda_a = 1.0\lambda = 1 \times 1 = 1$ Calculate load bearing length of the anchor $h_{ef}=8~{
m in}$ - Anchor rod effective embedment length ACI 318-19 Clause 17.7.2.2.1 $l_e=h_{ef}=8 \ \mathrm{in}$ Calculate basic single anchor breakout strength $f_{c}^{\,\prime}=3~\mathrm{ksi}$ - Concrete compressive strength (3000) $d_a=0.5~{
m in}$ - Anchor rod diameter ACI 318-19 Eq. 17.7.2.2.1a $V_{b1} = 7 igg(rac{\min{\left(\mathrm{l_e,~8d_a}
ight)}}{d_a}igg)^{0.2} \sqrt{rac{d_a}{in}} \lambda_a \sqrt{rac{f_c^{'}}{psi}} igg(rac{c_{a1,g2}'}{in}igg)^{1.5} lbf$ $V_{b1} = 7 \times \left(\frac{\min{(8~\text{in},~8 \times 0.5~\text{in})}}{0.5~\text{in}}\right)^{0.2} \times \sqrt{\frac{0.5~\text{in}}{1~\text{in}}} \times 1 \times \sqrt{\frac{3~\text{ksi}}{0.001~\text{ksi}}} \times \left(\frac{6.6667~\text{in}}{1~\text{in}}\right)^{1.5} \times 0.001~\text{kip}$ $V_{b2} = 9\lambda_a \sqrt{rac{f_c^{'}}{psi}} \left(rac{c_{a1,g2}^{'}}{in}
ight)^{1.5} lbf$ $\boxed{V_{b2} = 9 \times 1 \times \sqrt{\frac{3 \; \mathrm{ksi}}{0.001 \; \mathrm{ksi}}} \times \left(\frac{6.6667 \; \mathrm{in}}{1 \; \mathrm{in}}\right)^{1.5} \times 0.001 \; \mathrm{kip} = 8.4853 \; \mathrm{kip}}$ ACI 318-19 Clause 17.7.2.2.1 ${\cal V}_b$ - Basic single anchor breakout strength $V_b = \min{(V_{\rm b1}\,,\,V_{\rm b2})} = \min{(7.0733~{
m kip},\,\,8.4853~{
m kip})} = 7.0733~{
m kip}$ $e_{N}^{\prime}=0$ - Eccentricity of the resultant tensile force (assumed 0 for shear) ACI 318-19 Clause 17.7.2.3.1 $\Psi_{ec,V}$ - Breakout eccentricity factor $\Psi_{ec,V} = \min \left(1.0, \; rac{1}{1 + rac{2 c_{
m N}'}{3 c_{
m obs}^2 c_{
m obs}}}
ight) = \min \left(1, \; rac{1}{1 + rac{2 imes 0}{3 imes 6.6667 \;
m in}}
ight) = 1$ Calculate edge effect factor $c_{a2,g2}=2~{
m in}$ - Anchor group distance to failure edge (+Vz shear) $\Psi_{ed,V} = \min \left(1.0,\ 0.7 + 0.3 \left(rac{\mathrm{c_{a2,g2}}}{1.5\mathrm{c'_{a1,g2}}}
ight)
ight) = \min \left(1,\ 0.7 + 0.3 imes \left(rac{2\ \mathrm{in}}{1.5 imes 6.6667\ \mathrm{in}}
ight)
ight) = 0.76$

 $\Psi_{h,V} = ext{max}\left(\sqrt{rac{1.5c'_{
m al.g2}}{t_{
m conc}}},\; 1.0
ight) = ext{max}\left(\sqrt{rac{1.5 imes 6.6667\, ext{in}}{10\, ext{in}}},\; 1
ight) = 1$

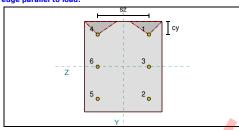
 $\Psi_{h,V}$ - Breakout thickness factor

ACI 318-19 Eq. 17.7.2.6.1

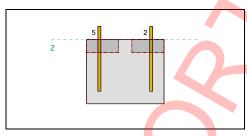
Calculate concrete breakout capacity at the perpendicular edge

 $\phi=0.65$ - Concrete shear resistance factor

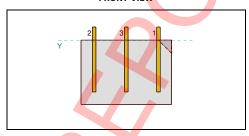
ACI 318-19 Clause 17.7.2.5.1 ACI 318-19 Clause 17.7.2.1(b)


 $\Psi_{c,V}=1$ - Breakout cracking factor (shear)

 $\phi V_{cbq\perp}$ - Design concrete breakout strength in shear of an anchor group (perpendicular edge)


$$\phi V_{cbg\perp} = \phi \left(rac{A_{Vc}}{A_{Vco}}
ight) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_b$$

$$\phi V_{cbg\perp} = 0.65 \times \left(\frac{140~\text{in}^2}{200~\text{in}^2}\right) \times 1 \times 0.76 \times 1 \times 1 \times 7.0733~\text{kip} = 2.446~\text{kip}$$


For breakout capacity on failure edge parallel to load

PLAN VIEW

FRONT VIEW

SIDE VIEW

Calculate shear load per single anchor

 $V_z=2~{
m kip}$ - Vz shear load

 $n_a=6$ - Total number of anchor rods

Determine if the support is a narrow concrete member

ACI 318-19 Clause 17.7.2.1.2

The support is not a narrow member

Symbol	Description	Value
$c_{left,s1}$	Single anchor concrete edge distance (left)	10.000 in
$c_{right,s1}$	Single anchor concrete edge distance (right)	2.000 in
$c_{top,s1}$	Single anchor concrete edge distance (top)	2.000 in
$c_{bottom,s1}$	Single anchor concrete edge distance (bottom)	12.000 in
t_{conc}	Concrete thickness	10.000 in
$c_{a1,s1}$	Single anchor distance to failure edge (+Vy shear)	2.000 in
	Narrow Member	FALSE

Calculate maximum projected area for a single anchor

ACI 318-19 Clause 17.7.2.1.2

ACI 318-19 Eq. 17.7.2.1.3

 $c_{a1,s1}=2~{
m in}$ - Single anchor distance to failure edge (+Vy shear)

 A_{Vco} - Maximum projected area for a single anchor

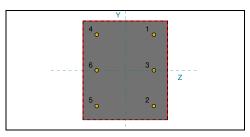
$$A_{Vco} = 4.5 (c_{a1,s1})^2 = 4.5 imes (2 ext{ in})^2 = 18 ext{ in}^2$$

ACI 318-19 Clause 17.7.2.1.1 Calculate width of actual projected area on failure surface B_{Vc} - Actual length of concrete cone for a single anchor

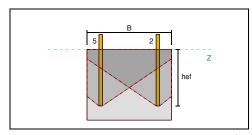
$$B_{Vc} = \min \left(\mathrm{c_{left,s1}}, \; 1.5 \mathrm{c_{a1,s1}} \right) + \min \left(\mathrm{c_{right,s1}}, \; 1.5 \mathrm{c_{a1,s1}} \right)$$

$$B_{Vc} = \min{(10 \; ext{in}, \; 1.5 imes 2 \; ext{in})} + \min{(2 \; ext{in}, \; 1.5 imes 2 \; ext{in})} = 5 \; ext{in}$$

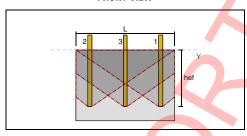
.


ACI 318-19 Clause 17.7.2.1.1 Calculate height of actual projected area on failure surface

 H_{Vc} - Actual height of projected area


SkyCiv

Calculation for critical anchor: Anchor ID 1.


	$H_{Vc} = \min \left(1.5 \mathrm{c}_{\mathrm{al,s1}}, \; \mathrm{t}_{\mathrm{conc}} ight) = \min \left(1.5 imes 2 \; \mathrm{in}, \; 10 \; \mathrm{in} ight) = 3 \; \mathrm{in}$
ACI 318-19 Clause 17.7.2.1.1	Calculate actual projected area A_{Vc} - Actual projected area
	$A_{Vc} = B_{Vc} H_{Vc} = 5 ext{ in} imes 3 ext{ in} = 15 ext{ in}^2$
	Calculate modification factor for lightweight concrete
ACI 318-19 Table 17.2.4.1	$\lambda=1$ - Factor for normal-weight concrete λ_a - Modification factor for lightweight concrete
	$\lambda_a=1.0\lambda=1 imes1=1$
	Calculate load bearing length of the anchor
ACI 310 10 Clause	$h_{ef}=8~{ m in}$ - Anchor rod effective embedment length
ACI 318-19 Clause 17.7.2.2.1	l_e - Load bearing length (equal to embedment height)
	$l_e=h_{ef}=8 \ { m in}$
	Calculate basic single anchor breakout strength $f_{c}^{'}=3~\mathrm{ksi}$ - Concrete compressive strength (3000)
	$d_a=0.5~{ m in}$ - Anchor rod diameter
ACI 318-19 Eq. 17.7.2.2.1a	V_{b1} - Basic single anchor breakout strength condition 1
	$V_{b1} = 7 igg(rac{\min{\left(\mathrm{l_e,\ 8d_a} ight)}}{d_a}igg)^{0.2} \sqrt{rac{J_a}{in}} \lambda_a \sqrt{rac{f_c^{'}}{psi}} igg(rac{c_{a1,s1}}{in}igg)^{1.5} lbf$
	$V_{b1} = 7 imes \left(rac{\min{(8 ext{ in, } 8 imes 0.5 ext{ in})}}{0.5 ext{ in}} ight)^{0.2} imes \sqrt{rac{0.5 ext{ in}}{1 ext{ in}}} imes 1 imes \sqrt{rac{3 ext{ ksi}}{0.001 ext{ ksi}}} imes \left(rac{2 ext{ in}}{1 ext{ in}} ight)^{1.5} imes 0.001 ext{ kip}$
	$V_{b1}=1.1623~ m kip$
ACI 318-19 Eq. 17.7.2.2.1b	V_{b2} - Basic single anchor breakout strength condition 2
	$V_{b2}=9\lambda_a\sqrt{rac{f_c}{psi}}ig(rac{c_{a1,s1}}{in}ig)^{1.5}lbf$
ACI 310 10 Clause	$V_{b2} = 9 imes 1 imes \sqrt{rac{3 ext{ ksi}}{0.001 ext{ ksi}}} imes \left(rac{2 ext{ in}}{1 ext{ in}} ight)^{1.5} imes 0.001 ext{ kip} = 1.3943 ext{ kip}$
ACI 318-19 Clause 17.7.2.2.1	V_b - Basic single anchor breakout strength
	$V_b = \min \left({{ m{V_{b1}}},\;{ m{V_{b2}}}} ight) = \min \left({1.1623\;{ m{kip}},\;1.3943\;{ m{kip}}} ight) = 1.1623\;{ m{kip}}$
ACI 318-19 Eq. 17.7.2.6.1	Calculate thickness factor $\Psi_{h,V}$ - Breakout thickness factor
	$\Psi_{h,V} = ext{max}\left(\sqrt{rac{1.5 c_{ ext{a1,s1}}}{ ext{t}_{ ext{conc}}}}, \ 1.0 ight) = ext{max}\left(\sqrt{rac{1.5 imes 2 ext{ in}}{10 ext{ in}}}, \ 1 ight) = 1$
	Calculate concrete breakout capacity at the parallel edge $\phi=0.65$ - Concrete shear resistance factor
ACI 318-19 Clause 17.7.2.5.1	$\Psi_{\mathrm{c},V}=1$ - Breakout cracking factor (shear)
ACI 318-19 Clause 17.7.2.1(c)	$\Psi_{ed,V}=1$ - Breakout edge effect factor for parallel failure edge
ACI 318-19 Clause 17.7.2.1(c)	$\phi V_{cb }$ - Design concrete breakout strength in shear of a single anchor (parallel edge)
	$\phi V_{cb\parallel} = 2\phi \left(rac{A_{Vc}}{A_{Vco}} ight)\Psi_{cd,V}\Psi_{c,V}\Psi_{h,V}V_b$
	$\phi V_{cb _1} = 2 imes 0.65 imes \left(rac{15 ext{ in}^2}{18 ext{ in}^2} ight) imes 1 imes 1 imes 1.1623 ext{ kip} = 1.2591 ext{ kip}$
	Result: DCR - Demand over capacity ratio, comparing two conditions:
	$DCR = \max\left(rac{\mathrm{V_{fa\perp,case2}}}{\phi\mathrm{V_{cbg\perp}}}, rac{\mathrm{V_{fa\parallel}}}{\phi\mathrm{V_{cb\parallel}}} ight)$
	$\langle arphi { m v}_{ m cbg \perp} arphi { m v}_{ m cb} ert angle$
	$DCR = \max\left(rac{2 ext{ kip}}{2.446 ext{ kip}}, rac{0.33333 ext{ kip}}{1.2591 ext{ kip}} ight) = 0.81767$
	Check No. 4: Concrete Pryout Capacity
4	

PLAN VIEW

FRONT VIEW

SIDE VIEW

Calculate total shear load on anchor group

 $V_y=2~{
m kip}$ - Vy shear load

 $V_z=2~{
m kip}$ - Vz shear load

 ${\cal V}_{ua}\,$ - Resultant shear load

$$V_{ua} = \sqrt{\left(\left(V_y\right)^2\right) + \left(\left(V_z\right)^2\right)} = \sqrt{\left(\left(2\;\mathrm{kip}\right)^2\right) + \left(\left(2\;\mathrm{kip}\right)^2\right)} = 2.8284\;\mathrm{kip}$$

 $n_a=6$ - Total number of anchor rods

 $n_{a,g1}=6$ - Number of anchors in anchor group PO 1

 ${\it V_{ua}}$ - Required concrete pryout strength of an anchor group

$$V_{ua} = \left(\frac{V_{ua}}{n_a}\right) n_{a,g1} = \left(\frac{2.8284 \; \mathrm{kip}}{6}\right) \times 6 = 2.8284 \; \mathrm{kip}$$

Determine if the support is a narrow concrete member ACI 318-19 Clause 17.7.2.1.2

The support is classified as a narrow member. The modified values below will be used throughout the calculations.

Symbol	Description						
Symbol	Description	Value					
$c_{left,g1}$	Anchor group PO 1 concrete edge distance (left)	2.000 in					
$c_{right,g1}$	Anchor group PO 1 concrete edge distance (right)	2.000 in					
$c_{top,g1}$	Anchor group PO 1 concrete edge distance (top)	2.000 in					
$c_{bottom,g1}$	Anchor group PO 1 concrete edge distance (bottom)	2.000 in					
h_{ef}	Anchor rod effective embedment length	8.000 in					
$s_{sum,y,g1}$	Anchor group PO 1 sum of spacing along Y-axis	10.000 in					
$s_{sum,z,g1}$	Anchor group PO 1 sum of spacing along Z-axis	8.000 in					
$n_{y,g1}$	Number of anchors along Y-axis for anchor group PO 1	3.000					
$n_{z,g1}$	Number of anchors along Z-axis for anchor group PO 1	2.000					
	Narrow Member	TRUE					
$h_{ef,g1}^{\prime}$	Anchor group PO 1 modified effective embedment length	2.667 in					

Calculate maximum projected area for a single anchor

ACI 318-19 Clause 17.6.2 ${\cal A}_{Nco}$ - Maximum projected area for a single anchor

$$A_{Nco} = 9 \Big(h_{ef,g1}' \Big)^2 = 9 imes (2.6667 \ ext{in})^2 = 64 \ ext{in}^2$$

Calculate length of actual projected cone area (along Z-direction)

 $s_{sum,z,\mathrm{g1}}=8~\mathrm{in}$ - Anchor group PO 1 sum of spacing along Z-axis

 $n_{z,g1}=2$ - Number of anchors along Z-axis for anchor group PO 1

 L_{Nc} - Actual length of concrete cone for an anchor group ACI 318-19 Clause 17.6.2

Calculation for critical anchor group: Anchor Group PO 1.

$$L_{Nc} = \min \left(c_{left,g1}, \ 1.5 h_{ef,g1}' \right) + \left(\min \left(s_{sum,z,g1}, \ 3 h_{ef,g1}' (n_{z,g1} - 1) \right) \right) + \min \left(c_{right,g1}, \ 1.5 h_{ef,g1}' \right)$$

 $L_{Nc} = \min \left(2 \text{ in, } 1.5 \times 2.6667 \text{ in} \right) + \left(\min \left(8 \text{ in, } 3 \times 2.6667 \text{ in} \times (2-1) \right) \right) + \min \left(2 \text{ in, } 1.5 \times 2.6667 \text{ in} \right)$

Calculate width of actual projected cone area (along Y-direction)

 $s_{sum,y,g1}=10 \; {
m in}$ - Anchor group PO 1 sum of spacing along Y-axis

 $n_{y,g1}=3$ - Number of anchors along Y-axis for anchor group PO 1

ACI 318-19 Clause 17.6.2

 B_{Nc} - Actual width of concrete cone for an anchor group

$$B_{\mathit{Nc}} = \min \left(c_{top,g1}, \ 1.5 h_{ef,g1}' \right) + \left(\min \left(s_{sum,y,g1}, \ 3 h_{ef,g1}' (n_{y,g1} - 1) \right) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g1}, \ 1.5 h_{ef,g1}' (n_{y,g1} - 1) \right) + \min \left(c_{bottom,g2}, \ 1.5 h_{ef,g2}' (n_{y,g2} - 1) \right) + \min \left(c_{bottom,g2}, \ 1.5 h_{ef,g2}' (n_{y,g2} - 1) \right) + \min \left(c_{bottom,g2}, \ 1.5 h_{ef,g2}' (n_{y,g2} - 1) \right) + \min \left(c_{bottom,g2}, \ 1.5 h_{ef,g2}' (n_{y,g2} - 1) \right) + \min \left(c_{bottom,g2}, \ 1.5 h_{ef,g2}' (n_{y,g2} - 1) \right) + \min \left(c_{bottom,g2}, \ 1.5 h_{ef,g2}' (n_{y,g2} - 1)$$

 $B_{Nc} = \min \left(2 \text{ in, } 1.5 \times 2.6667 \text{ in} \right) + \left(\min \left(10 \text{ in, } 3 \times 2.6667 \text{ in} \times (3-1) \right) \right) + \min \left(2 \text{ in, } 1.5 \times 2.6667 \text{ in} \right)$

 $n_{a,g1}=6$ - Number of anchors in anchor group PO 1

ACI 318-19 Clause 17.6.2

 $A_{Nc} = \min(n_{a,g1}A_{Nco}, L_{Nc}B_{Nc}) = \min(6 \times 64 \text{ in}^2, 12 \text{ in} \times 14 \text{ in}) = 168 \text{ in}^2$

Calculate modification factor for lightweight concrete

 $\lambda=1$ - Factor for normal-weight concrete

ACI 318-19 Table 17.2.4.1

 λ_a - Modification factor for lightweight concrete

$$\lambda_{-} = 1.0\lambda = 1 \times 1 =$$

 $f_c^{'}=3~\mathrm{ksi}$ - Concrete compressive strength (3000)

ACI 318-19 Clause 17.6.2.2.1

 $k_c=24$ - Factor for cast-in anchors breakout strength

ACI 318-19 Eq. 17.6.2.2.1

 $N_b\,$ - Basic single anchor breakout strength

$$N_b = k_c \lambda_a \sqrt{rac{f_c^{'}}{psi}} {\left(rac{h_{ef,g1}^{'}}{in}
ight)}^{1.5} lbf$$

$$N_b = 24 \times 1 \times \sqrt{\frac{3 \text{ ksi}}{0.001 \text{ ksi}}} \times \left(\frac{2.6667 \text{ in}}{1 \text{ in}}\right)^{1.5} \times 0.001 \text{ kip} = 5.7243 \text{ kip}$$

$$c_{a,min} = \min \left(\mathrm{c}_{\mathrm{left,g1}}, \ \mathrm{c}_{\mathrm{right,g1}}, \ \mathrm{c}_{\mathrm{top,g1}}, \ \mathrm{c}_{\mathrm{bottom,g1}} \right) = \min \left(2 \ \mathrm{in}, \ 2 \ \mathrm{in}, \ 2 \ \mathrm{in} \right) = 2 \ \mathrm{in}$$

 $\emph{e}'_{N}=0$ - Eccentricity of the resultant tensile force (assumed 0 for shear)

ACI 318-19 Clause 17.6.2.4.1

 $\Psi_{ec,N}$ - Breakout eccentricity factor

Calculate edge effect factor ACI 318-19 Clause 17 6 2 4 1

$$\Psi_{\text{cd,N}} = \min\left(1.0,\ 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h'_{ef,g1}}\right)\right) = \min\left(1,\ 0.7 + 0.3 \times \left(\frac{2\ in}{1.5 \times 2.6667\ in}\right)\right) = 0.85$$

 $\Psi_{c,N}=1$ - Breakout cracking factor (tension)

ACI 318-19 Clause 17.6.2.6.2

=1 - Breakout concrete splitting factor

ACI 318-19 Eq. 17.6.2.1b

 N_{cbg} - Nominal concrete breakout strength in shear of an anchor group

$$N_{cbg} = \left(rac{A_{Nc}}{A_{Nco}}
ight)\Psi_{ec,N}\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}N_b$$

$$N_{cbg} = \left(\frac{168 \; \text{in}^2}{64 \; \text{in}^2}\right) \times 1 \times 0.85 \times 1 \times 1 \times 5.7243 \; \text{kip} = 12.772 \; \text{kip}$$

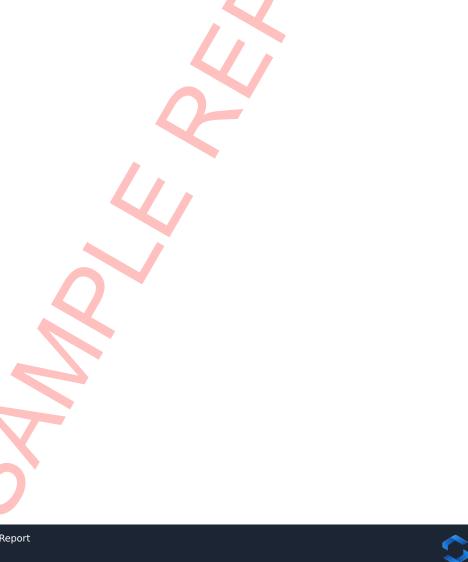
Calculate design concrete pryout capacity

 $\phi=0.65$ - Concrete shear resistance factor

ACI 318-19 Clause 17.6.2.2.1 ACI 318-19 Eq. 17.7.3.1b $k_{cp}=2$ - Factor for pryout strength

 ϕV_{cpg} - Design concrete pryout strength of an anchor group

 $\phi V_{cpg} = \phi k_{cp} N_{cbg} = 0.65 \times 2 \times 12.772 \; \mathrm{kip} = 16.604 \; \mathrm{kip}$



Calculations according to AISC provisions:

	Calculate nominal area of the anchor rod	
	$d_a=0.5~{ m in}$ - Anchor rod diameter	A
	A_{rod} - Nominal area of anchor rod	
	$A_{rod} = rac{\pi}{4} (d_a)^2 = rac{\pi}{4} imes (0.5 ext{ in})^2 = 0.19635 ext{ in}^2$	
	Calculate nominal shear stress of the anchor rod $F_{u_anc}=120~{ m ksi}$ - Anchor rod tensile stress (A325)	
AISC 360-22 Table J3.2	F_{nv} - Nominal shear stress of the anchor rod for threads not excluded on shear plane (N)	
	$F_{nv} = 0.45 F_{u_anc} = 0.45 imes 120 \; ext{ksi} = 54 \; ext{ksi}$	
	Calculate nominal tensile stress of the anchor rod	
AISC 360-22 Table J3.2	F_{nt} - Nominal tensile stress of anchor rod	
	$F_{nt}=0.75F_{u_anc}=0.75 imes120~\mathrm{ksi}=90~\mathrm{ksi}$	
	Calculate nominal modified shear stress of the anchor rod to include effects of tensile stress	
	$f_t=16.806~\mathrm{ksi}$	
	$\phi=0.75$ - Anchor steel resistance factor (AISC)	
AISC 360-22 Eq. J3-3a (rewritten per Sect J3.8 note)	F_{nv}^{\prime} - Nominal shear stress modified to include the effects of tensile stress	
	$F_{nv}' = \min \left(1.3 \mathrm{F}_{\mathrm{nv}} - \left(rac{\mathrm{F}_{\mathrm{nv}}}{\phi \mathrm{F}_{\mathrm{nt}}} ight) \mathrm{f_t}, \; \mathrm{F}_{\mathrm{nv}} ight)$	
	$F'_{nv} = \min \left(1.3 \times 54 \text{ ksi} - \left(\frac{54 \text{ ksi}}{0.75 \times 90 \text{ ksi}} \right) \times 16.806 \text{ ksi}, \ 54 \text{ ksi} \right) = 54 \text{ ksi}$	
AISC 360-22 Eq. J3-2	Calculate design shear and tensile strength of the anchor rod per AISC provisions $\phi R_{n,aisc}$ - Design anchor rod combined tensile and shear strength per AISC	
	$\phi R_{n,aisc} = \phi F_{nv}' A_{rod} = 0.75 imes 54 \; ext{ksi} imes 0.19635 \; ext{in}^2 = 7.9522 \; ext{kip}$	
	Calculate governing capacity	
ACI 318-19 Clause 17.7.1.2 and AISC 360-22 Section J3.7&8	ϕV_n - Governing anchor rod steel shear strength	
	$\phi V_n = \min{(\phi m V_{sa,aci}, \; \phi m R_{n,aisc})} = \min{(3.9845 \; m kip, \; 7.9522 \; m kip)} = 3.9845 \; m kip$	
	Result:	PASS = 0.12
	DCR - Demand-to-Capacity Ratio	
		I

 $\frac{0.4714 \text{ kip}}{3.9845 \text{ kip}} = 0.11831$

REFERENCES	CALCULATIONS						RESULTS		
	Summary of Design Checks							The governing combination is Load Combination 1.	
	Load Cor	mbination	Design Check	Demand	Capacity	DCR	Result		
		1	Weld Capacity	0.16	5.58	0.03	PASS		
		1	Concrete Breakout Capacity (Vy Shear)	0.33	0.57	0.59	PASS		
		1	Concrete Breakout Capacity (Vz Shear)	2.00	2.45	0.82	PASS		>
		1	Concrete Pryout Capacity	2.83	16.60	0.17	PASS		
		1	Anchor Rod Shear Capacity	0.47	3.98	0.12	PASS		
			The design is adequ	ate!					

