
REFERENCES	CALCULATIONS	RESULTS	
	Brace to Column Flange Knee Brace Connection Calculations		
	$\label{eq:constraints} \begin{array}{ c c c } \hline \textbf{Column Section Properties:} \\ \hline W14x90 & - Column Size \\ \hline d_c = 14 \text{ in - Column Depth} \\ \hline t_{w,c} = 0.44 \text{ in - Column Web Thickness} \\ \hline b_{f,c} = 14.5 \text{ in - Column Flange Width} \\ \hline t_{f,c} = 0.71 \text{ in - Column Flange Thickness} \\ \hline A_c = 26.5 \text{ in}^2 - \text{Column Flange Thickness} \\ \hline A_{c} = 26.5 \text{ in}^2 - \text{Column Area} \\ \hline \textbf{Column Grade Information:} \\ \hline A992 & - \text{Material Grade} \\ \hline F_{y,c} = 50 \text{ ksi - Column Yield Stress} \\ \hline F_{u,c} = 65 \text{ ksi - Column Tensile Stress} \\ \hline \end{array}$		
	$\begin{array}{l} \textbf{Brace Section Properties:}\\ 2L5x3-1/2x1/2-LLBB & -\textit{Brace Size}\\ A_{br} = 8 \ \text{in}^2 -\textit{Brace Area}\\ L_{on,gp,br} = 5 \ \text{in} -\textit{Brace Leg on Gusset}\\ L_{off,gp,br} = 3.5 \ \text{in} -\textit{Brace Leg off Gusset}\\ t_{br} = 0.5 \ \text{in} -\textit{Brace Thickness}\\ \theta_{br} = 45 -\textit{Brace Slope from Support in Degrees}\\ L_{b,br} = 8 \ \text{in} -\textit{Brace Unbraced Length}\\ \textbf{Brace Grade Information:} \end{array}$		
	A36 - Material Grade $F_{y,br} = 36$ ksi - Brace Yield Stress $F_{u,br} = 58$ ksi - Brace Tensile Stress		
	Design Loads: $T_{u,br} = 25 \text{ kip}$ - Brace Tension Load $C_{u,br} = 25 \text{ kip}$ - Brace Compression Load		
	$\begin{array}{l} \mbox{Connection Information at Brace to Gusset Plate:} \\ t_{gp} = 1 \mbox{ in } - \mbox{Gusset Plate Thickness} \\ W = 0.25 \mbox{ in } - \mbox{Fillet Weld Size} \\ L_w = 6 \mbox{ in } - \mbox{Weld Length} \\ E70XX & - \mbox{Filler Metal Classification} \end{array}$		
	$ \begin{array}{l} \mbox{Connection Information at Gusset Plate to Support:} \\ W = 0.25 \mbox{ in - Fillet Weld Size} \\ L_{w1} = 12 \mbox{ in - Weld Length 1} \\ L_{w2} = 11 \mbox{ in - Weld Length 2} \\ E70XX & - Filler Metal Classification \\ \end{array} $		

REFERENCES	CALCULATIONS	RESULTS
	Brace Connection to Gusset Plate AISC 360-16 LRFD	
	Check No. 1: Connection Detailing Limitations	
	Detailing Limitations Limit Value (in) Actual Value (in) DCR Result	
	Minimum Fillet Weld Size 0.188 0.250 0.752 PASS	
	Maximum Fillet Weld Size0.4380.2500.571PASS	
	Result:	PASS
	Demand over Capacity Ratio $DCR = \frac{d}{c} = \frac{(0.188)}{(0.25)} = 0.752$	
	Check No. 2: Design Capacity of the Welds at Brace to Gusset Calculate the maximum fillet weld size in 16th of an inch for base metal check.	
	$t_{br}=0.5~{ m in}$ - Brace Thickness	
	$F_{u,br}=58~{ m ksi}$ - Brace Tensile Stress $t_{gp}=1~{ m in}$ - Gusset Plate Thickness	
	$F_{u,gp}^{gp}=65~{ m ksi}$ - Gusset Plate Tensile Stress	
AISC 15th Ed. Part 9 Eq. (9- 2)	D_{max} - Maximum Fillet Weld Size for Base Metal Strength	
	$t_{br} \; F_{u,br} \leq t_{gp} \; F_{u,gp}$	
	$D_{max} = rac{t_{br} \ F_{u,br} \leq t_{gp} \ F_{u,gp}}{3.09 \ \mathrm{kip/in}}$	
	$(0.5 \text{ in}) \times (58 \text{ ksi}) \le (1 \text{ in}) \times (65 \text{ ksi})$	
	$D_{max} = rac{(0.5 ext{ in}) imes (58 ext{ ksi}) \leq (1 ext{ in}) imes (65 ext{ ksi})}{(3.09 ext{ kip/in})}$	
	D 0.0051	
	$D_{max}=9.3851$	
	Calculate the total effective weld length for NS/FS fillet welds. $W=0.25~{ m in}$ - Fillet Weld Size	
	$W = 0.25~{ m m}$ - Fillet weld Size $L_w = 6~{ m in}$ - Weld Length	
	L_w - Total Effective Length of Weld	
	$L_w = 4 \left[L_w - 2 \left(W \le 0.3125 { m in} ight) ight]$	
	$L_w = 4 imes [(6 ext{ in}) - 2 imes ((0.25 ext{ in}) \le (0.3125 ext{ in}))]$	
	$L_w = 4 \times [(0 \text{ m}) - 2 \times ((0.25 \text{ m}) \le (0.3125 \text{ m}))]$	
	$L_w=22~{ m in}$	
	Calculate the design capacity of the weld.	
	$F_{EXX} = 70$ ksi - Filler Metal Classification Strength	
AISC 15th Ed. Part 9 Eq. (9-	$W=0.25~{ m in}$ - Fillet Weld Size $D_{max}=9.3851$ - Maximum Fillet Weld Size for Base Metal Strength	
2)	$L_w=22~{ m in}$. Total Effective Length of Weld	
AISC 360-16 Chapter 12 4	$\phi=0.75$ - Fillet Weld Resistance Factor	
AISC 360-16 Chapter J2.4 Eq. (J2-4)	ϕR_n - Design Strength of Welds	
	$\phi R_n = \phi \ 0.6 \ F_{EXX} \ rac{\sqrt{2}}{2} \left(W \leq rac{D_{max}}{16} ight) \ L_w$	
	$\phi R_n = (0.75) \times 0.6 \times (70 \text{ ksi}) \times \frac{\sqrt{2}}{2} \times \left((0.25 \text{ in}) \leq \frac{(9.3851)}{(16)} \right) \times (22 \text{ in})$	
	$\varphi_{1,0} = (0,0) \times (0,0) \times (10,00) \times 2 \times (10,00,0) = (16) \int (10,00,00) \varphi_{1,0}(10,00,0) = (16) \int (10,00,00,0) \varphi_{1,0}(10,00,0) = (10,00,00,0) = (10,00,00,0) = (10,00,00,0)$	
	$\phi R_n = 122.51 { m ~kip}$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = rac{T_{ m u,br}}{\phi R_n} = rac{(25 \ { m kip})}{(122.51 \ { m kip})} = 0.20407$	
	Check No. 3: Design Block Shear Capacity of the Gusset Plate	
	Calculate the net area of the gusset plate subject to tension. $t_{gp}=1~{ m in}$ - Gusset Plate Thickness	
	$L_{on,gp,br}=5~{ m in}$ - Brace Leg on Gusset	
	A_{nt} - Net Area Subject to Tension (C-pattern)	
	$A_{nt} = t_{gp} \; L_{on,gp,br}$	
	$A_{nt} = (1 ext{ in}) imes (5 ext{ in})$	
	$A_{nt}=5~{ m in}^2$	
	Calculate the gross area of the gusset plate subject to shear.	
	$t_{gp}=1$ in - Gusset Plate Thickness $L_w=6$ in - Weld Length	
	$L_w = 6$ In - weld Length A_{gv} - Gross Area Subject to Shear (C-pattern)	
	$A_{qv}=2t_{qp}L_w$	
	$A_{gv}=2 imes (1 ext{ in}) imes (6 ext{ in})$	
	$A_{av}=12~{ m in}^2$	
	y*	
	Calculate the net area of the gusset plate subject to shear.	

	$t_{gp}=1$ in - Gusset Plate Thickness $L_w=6$ in - Weld Length	
	$L_w = 0$ in - weid Length A_{nv} - Net Area Subject to Shear (C-pattern)	
	$A_{nv}=2\;t_{qp}\;L_w$	
	$A_{nv}=2 imes (1 ext{ in}) imes (6 ext{ in})$	
	$A_{nv}=12~{\rm in}^2$	
	Calculate the design block shear capacity of the gusset plate.	
	$F_{u,gp}=65~{ m ksi}$ - Gusset Plate Tensile Stress	
	$A_{nv}=12~{ m in}^2$ - Net Area Subject to Shear (C-pattern) $U_{ m hs}=1$ - Uniformity factor	
	$A_{nt} = 5 \ { m in}^2$ - Net Area Subject to Tension (C-pattern)	
	$F_{y,gp}=50{ m ksi}$ - Gusset Plate Yield Stress	
	$A_{gv}=12~{ m in}^2$ - Gross Area Subject to Shear (C-pattern)	
AISC 360-16 Chapter J4.3 Eq. (J4-5)	$\phi=0.75$ - Block Shear Resistance Factor ϕR_n - Design Block Shear Capacity of Section	
Eq. (J4-5)		
	$\phi R_n = \phi \; (0.6 \; F_{u,gp} \; A_{nv} + U_{bs} \; F_{u,gp} \; A_{nt} \leq 0.6 \; F_{y,gp} \; A_{gv} + U_{bs} \; F_{u,gp} \; A_{nt})$	
	$\phi R_n = (0.75) \times \left(0.6 \times (65 \text{ ksi}) \times \left(12 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(5 \text{ in}^2\right) \le 0.6 \times (50 \text{ ksi}) \times \left(12 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(5 \text{ in}^2\right)\right)$	
	$\phi R_n = 513.75 ~\rm kip$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = rac{T_{u,br}}{\phi R_n} = rac{(25 \ { m kip})}{(513.75 \ { m kip})} = 0.048662$	
	Check No. 4: Design Capacity of the Brace in Tension Calculate the tensile rupture capacity of the brace.	
	$\phi=0.75$ - Tensile Rupture Resistance Factor	
	$F_{u,br}=58~{ m ksi}$ - Brace Tensile Stress $A_{br}=8~{ m in}^2$ - Brace Area	
	$A_{br} = 8$ III ² - Brace Area $ar{x} = 0.901$ in - Brace Centroid	
	$L_w=6~{ m in}$ - Weld Length	
AISC 360-16 Chapter D3 (Table D3.1 case 2)	U - Shear Lag Factor	
	$U=1-rac{ar{x}}{L_w}$	
	\sim $ L_w$	
	$_{II}$ (0.901 in)	
	$U = 1 - rac{(0.901 ext{ in})}{(6 ext{ in})}$	
	U=0.84983	
AISC 360-16 Chapter I4.1		
AISC 360-16 Chapter J4.1 Eq. (J4-2)	$\phi R_{n_{-}tr}$ - Design Tension Rupture Capacity of Section	
	$\phi R_{n_tr} = \phi \; F_{u,br} U A_{br}$	
	$\phi R_{n_{.tr}} = (0.75) imes (58 \; { m ksi}) imes (0.84983) imes (8 \; { m in}^2)$	
	$\phi R_{n_tr} = 295.74~{\rm kip}$	
	Result: Demand over Capacity Ratio	PASS
	$DCR = rac{T_{u,br}}{\phi R_{u,tr}} = rac{(25 \ { m kp})}{(295.74 \ { m kp})} = 0.084533$	
	φ ^I H _{n_L} r (295.74 kip) Check No. 5: Design Capacity of the Gusset Plate in Tension	
	Calculate the tensile yielding capacity of the gusset plate.	
	$\phi=0.9$ - Tensile Yielding Resistance Factor $F_{u,qp}=50~{ m ksi}$ - Gusset Plate Yield Stress	
	$t_{gp}^{system}=1~{ m in}$ - Gusset Plate Thickness	
AISC 360-16 Chapter IA 1	$W_{br} = 11.928$ in - Whitmore Section	
AISC 360-16 Chapter J4.1 Eq. (J4-1)	$\phi R_{n_{-}ty}$ - Design Tension Yielding Capacity of Section	
	$\phi R_{n_ty} = \phi F_{y,gp} t_{gp} W_{br}$	
	$\phi R_{n_ty} = (0.9) imes (50 ext{ ksi}) imes (1 ext{ in}) imes (11.928 ext{ in})$	
	$\phi R_{n_{e}ty} = 536.77~{ m kip}$	
	Result:	PASS
	Demand over Capacity Ratio T_{truthe} (25 kip)	
	$DCR = rac{T_{u,br}}{\phi R_{u,by}} = rac{(25 \text{ kip})}{(530.77 \text{ kip})} = 0.046575$	
	Check No. 6: Design Capacity of the Gusset Plate in Compression Calculate the compression buckling capacity of the gusset plate.	
	$\phi=0.9$ - Compression Resistance Factor	
	$F_{y,gp} = 50$ ksi - Gusset Plate Yield Stress	
	$t_{gp}=1$ in - Gusset Plate Thickness $W_{br}=11.928$ in - Whitmore Section	
	K=1.2 - Effective Length Factor	
	$L_{b,br} = 8$ in - Brace Unbraced Length	
	$rac{KL}{r}=33.255$ - Effective Length Slenderness Ratio	

	Since, $\frac{KL}{r} > 25$.						
AISC 360-16 Chapter E3 Eq. (E3-4)	Since, $\frac{KL}{r} > 25$. F_e - Elastic Buckling Stress						
$F_e = rac{\pi^2 E}{\left(rac{\kappa L}{r} ight)^2} onumber \ F_e = rac{\pi^2 \times (29000 \ \mathrm{ksi})}{\left((33.255) ight)^2}$							
		$F_e=258.81~\rm ksi$					
	$4.71\sqrt{rac{E}{F_y}}=113.43$ - Effective Length Slenderness Ratio Limite	er					
	Since, $rac{KL}{r} \leq 4.71 \sqrt{rac{E}{F_y}}.$						
AISC 360-16 Chapter E3 Eq. (E3-2)	F_{cr} - Critical Buckling Stress						
(13-2)		$=\left(0.658rac{F_{y,gp}}{F_e} ight)F_{y,gp}$					
$F_{cr} = \left(0.658^{rac{(50 ext{ koi})}{(258.81 ext{ kai})}} ight) imes (50 ext{ ksi})$							
		$F_{cr} = 46.116 \; \rm ksi$					
AISC 360-16 Chapter E3 Eq. (E3-1)	ϕR_n - Design Compressive Capacity of Section						
(E3-1)							
	Ģ	$\phi R_n = \phi \; F_{cr} \; t_{gp} \; W_{br}$					
	$\phi R_n = (0.9) imes (46.116 ext{ ksi}) imes (1 ext{ in}) imes (11.928 ext{ in})$						
		$\phi R_n = 495.07 \; \rm kip$					
	Result: Demand over Capacity Ratio $DCR = \frac{C_{u,br}}{\phi R_n} = \frac{(25 \text{ kip})}{(495.07 \text{ kip})} = 0.050498$						PASS
		mary of Check	s				
	Design Checks	Demand	Capacity	DCR	Result		
	Connection Detailing Limitations Design Capacity of the Welds at Brace	0.188 to Gusset 25.000	0.250	0.752	PASS		
	Design Block Shear Capacity of the Gu		513.750	0.204	PASS		
	Design Capacity of the Gu		295.742	0.045	PASS		
	Design Capacity of the Gusset Plate in		536.769	0.047	PASS		
	Design Capacity of the Gusset Plate in		495.074	0.050	PASS		
						-	

REFERENCES	CALCULATIONS	RESULTS
	Gusset Plate Connection to Support AISC 360-16 LRFD	
	Check No. 1: Connection Detailing Limitations	
	Detailing Limitations Limit Value (in) Actual Value (in) DCR Result	
	Minimum Fillet Weld Size 0.250 0.250 1.000 PASS	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = rac{d}{c} = rac{(0.25)}{(0.25)} = 1$	
	Check No. 2: Design Capacity of Weld at Gusset to Support Connection Information:	
	$\phi=0.75$ - Fillet Weld Resistance Factor	
	$W=0.25~{ m in}$ - Fillet Weld Size $F_{EXX}=70~{ m ksi}$ - Filler Metal Classification Strength	
	$t_{f,c} = 0.71$ in - Column Flange Thickness	
	$F_{u,c}=65~{ m ksi}$ - Column Tensile Stress	
	$t_{gp}=1$ in - Gusset Plate Thickness $F_{u,gp}=65~{ m ksi}$ - Gusset Plate Tensile Stress	
	$L_{w,gp} = 23$ in - Total Plate Length	
	Calculate Dmax:	
AISC 15th Ed. Part 9 Eq. (9- 2)	Maximum Fillet Weld Size for Base Metal Strength	
	$D_{max} = rac{t_{f,c} F_{u,c} \leq rac{t_{gp}}{2} F_{u,gp}}{3.09 ext{ kin/m}} = rac{(0.71 ext{ in}) imes (65 ext{ ksi}) \leq (0.5 ext{ in}) imes (65 ext{ ksi})}{(3.09 ext{ kin/m})} = 10.518$	
	Calculate Total Weld Length:	
	Total Effective Length of Weld	
	$L_w = 2 \ [L_{WT} - 2 \ (W \le 0.3125 \ { m in})] = 2 imes [(23 \ { m in}) - 2 imes ((0.25 \ { m in}) \le (0.3125 \ { m in}))] = 45 \ { m in}$	
	Design Loads: Moment Load at Gusset to Support	
	$M_{br} = rac{N_{br} \mid L_{w2} \mid - L_{w2} \mid}{2} = rac{(17.678 m ~kip) imes \mid (12 m ~in) - (11 m ~in) \mid}{2} = 0.73657 m ~kip \cdot ft$	
	Brace Component Perpendicular to Support $N_{br} = T_{u,br} \sin(heta_{br}) = (25 ext{ kip}) imes \sin((45)) = 17.678 ext{ kip}$	
	$N_{br,T} = rac{8M_{br}}{L_w} + N_{br} = rac{8 imes (0.73657 ext{ kipt})}{(45 ext{ in})} + (17.678 ext{ kip}) = 19.249 ext{ kip}$ Brace Component Along Support	
	$V_{br} = T_{u,br} \cos(\theta_{br}) = (25 \text{ kip}) \times \cos((45)) = 17.678 \text{ kip}$	
	Resultant Load	
	$R = \sqrt{(N_{br,T})^2 + (V_{br})^2} = \sqrt{((19.249 \text{ kip}))^2 + ((17.678 \text{ kip}))^2} = 26.135 \text{ kip}$ Loading Angle at Weld in Degrees	
	Loading Angle at Weld in Degrees $\theta = \tan^{-1}\left(\frac{N_{tr,T}}{V_{tr,r}}\right) = \tan^{-1}\left(\frac{(19.249 \text{ kp})}{(17.678 \text{ km})}\right) = 47.437$	
AISC 360-16 Chapter J2.4 Éq. (J2-4)	ϕR_n - Design Strength of Welds	
Ly. 02 +)	$\phi R_n = \phi \ 0.6 \ F_{EXX} \ rac{\sqrt{2}}{2} \left(W \leq rac{D_{max}}{16} ight) \ \left[1 + 0.5 \ (\sin heta)^{1.5} ight] \ L_w$	
	$\phi R_n = (0.75) \times 0.6 \times (70 \text{ ksi}) \times \frac{\sqrt{2}}{2} \times \left((0.25 \text{ in}) \leq \frac{(10.518)}{(16)} \right) \times \left[1 + 0.5 \times (\sin(47.437))^{1.5} \right] \times (45 \text{ in})$	
	$\Delta D = 200.79$ lin	
	$\phi R_n = 329.78~{ m kip}$	PACC
	Result: Demand over Capacity Ratio	PASS
	$DCR = rac{R}{\phi R_n} = rac{(26.135 ext{ kip})}{(329.78 ext{ kip})} = 0.07925$	
	Check No. 3: Design Capacity of the Support	
	Calculate the web local crippling capacity of the Support. $\phi=0.75$ - Web Local Crippling Resistance Factor	
	$t_{w,c}=0.44~{ m in}$ - Column Web Thickness	
	$l_b=11.5~{ m in}$ - Bearing Length: Half Gusset Plate Length along Support $d_c=14~{ m in}$ - Column Depth	
	$t_{f,c}=0.71~{ m in}$ - Column Flange Thickness	
	$F_{y,c} = 50$ ksi - Column Yield Stress	
AISC 360-16 Chapter J10.3 Eq. (J10-4)	$E=29000~{ m ksi}$ - Modulus for Steel ϕR_{n_ewlec} - Design Web Local Crippling Capacity of Support	
Eq. (J10-4)		
	$\phi R_{n_wlc} = \phi \ 0.8 \ \left(t_{w,c} ight)^2 \ \left[1+3 \ \left(rac{l_b}{d_c} ight) \ \left(rac{t_{w,c}}{t_{f,c}} ight)^{1.5} ight] \ \sqrt{rac{E \ F_{y,c} \ t_{f,c}}{t_{w,c}}} \ Q_f$	
	$\phi R_{n_wlc} = (0.75) \times 0.8 \times ((0.44 \text{ in}))^2 \times \left[1 + 3 \times \left(\frac{(11.5 \text{ in})}{(14 \text{ in})}\right) \times \left(\frac{(0.44 \text{ in})}{(0.71 \text{ in})}\right)^{1.5}\right] \times \sqrt{\frac{(29000 \text{ ksi}) \times (50 \text{ ksi}) \times (0.71 \text{ in})}{(0.44 \text{ in})}} \times (1)$	
	$\phi R_{n\ wlc}=391.29 { m \ kip}$	
	Calculate the web local yielding capacity of the Support.	
	$\phi=1$ - Web Local Yielding Resistance Factor	
	$F_{y,c}=50~{ m ksi}$ - Column Yield Stress	
	$t_{w,c}=0.44~{ m in}$ - Column Web Thickness $k_{des,c}=1.31~{ m in}$ - Column kdes	

AISC 360-16 Chapter J10.2 Eq. (J10-2)	$l_b=11.5~{ m in}$ - Bearing Length: Half Gusset Plate Length along Support $\phi R_{n\perp wly}$ - Design Web Local Yielding Capacity of Support						
	$\phi R_{n_wly} = \phi \; F_{y,c} \; t_{w,c} \; (5 \; k_{des,c} + l_b)$						
	$\phi R_{n_udy} = (1) imes (50 ext{ ksi}) imes (0.44 ext{ in}) imes (5 imes (1.31 ext{ in}) + (11.5 ext{ in}))$						
$\phi R_{n_wly} = 397.1 \; \rm kip$							
AISC 360-16 Chapter J10	Calculate for the governing design capacity of the Support. AISC 360-16 Chapter/10 ϕR_n - Governing Design Capacity of the Support						
	$\phi R_n = min \left(\phi R_{n_wlc}, \phi R_{n_wly} ight)$						
	$\phi R_n = \min\left(\left(391.29 \; {\rm kip} \right), \left(397.1 \; {\rm kip} \right) \right)$						
	$\phi R_n = 391.29 ~\rm kip$						
	$N_{br.at.support} = 9.6245 \; { m kip}$ - Required Load: Half total Nbr						
	Result: Demand over Capacity Ratio					PASS	
	$DCR = rac{N_{br,al,support}}{\phi R_n} = rac{(9.6245 \ ext{kip})}{(391.29 \ ext{kip})} = 0.024597$						
	Summary of Checks						
	Design Checks De	emand	Capacity	DCR	Result		
	Connection Detailing Limitations	0.250	0.250	1.000	PASS		
	Design Capacity of Weld at Gusset to Support	26.135	329.777	0.079	PASS		
	Design Capacity of the Support	9.625	391.294	0.025	PASS		