| REFERENCES | CALCULATIONS                                                                                      | RESULTS |
|------------|---------------------------------------------------------------------------------------------------|---------|
|            | Beam to Column Web Moment Connection Calculations                                                 |         |
|            | Design Load/s:                                                                                    |         |
|            | $V_u = 400 	ext{ kip}$ - Vertical Shear Load                                                      |         |
|            | $M_{ux} = 500~{ m kipft}$ - Strong-axis Moment Load                                               |         |
|            | Beam Section Properties:                                                                          |         |
|            | W27x194 - Beam Size<br>$d_{\rm r} = 28.1$ in Room Dopth                                           |         |
|            | $u_{bm} = 28.1~{ m m}$ - Beam Depth $t_{wb} = 0.75~{ m in}$ - Beam Web Thickness                  |         |
|            | $b_{fb}=14~{ m in}$ - Beam Flange Width                                                           |         |
|            | $t_{fb}=1.34~{ m in}$ - Beam Flange Thickness                                                     |         |
|            | $A_{bm}=57.1~{ m in}^2$ - Beam Area                                                               |         |
|            | Beam Grade Information:                                                                           |         |
|            | A992 - Material Grade                                                                             |         |
|            | $F_{yb} = 50$ ksi - Beam Yield Stress<br>$F_{yb} = 65$ ksi - Beam Tonsilo Stress                  |         |
|            | $E = 29000 	ext{ ksi}$ - Beam Modulus of Elasticity                                               |         |
|            | Column Section Properties:                                                                        |         |
|            | W14x90 - Column Size                                                                              |         |
|            | $a_{sup} = 14 \text{ In}$ - Column Depth<br>$t_{res} = 0.44 \text{ in}$ - Column Web Thickness    |         |
|            | $b_{fs} = 14.5 	ext{ in - Column Flange Width}$                                                   |         |
|            | $t_{fs}=0.71~{ m in}$ - Column Flange Thickness                                                   |         |
|            | $A_{sup}=26.5~{ m in}^2$ - Column Area                                                            |         |
|            | Column Grade Information:                                                                         |         |
|            | A992 - Material Grade                                                                             |         |
|            | $F_{ys}=50~{ m ksi}$ - Column Yield Stress                                                        |         |
|            | $F_{us}=65~{ m ksi}$ - Column Tensile Stress $E=29000~{ m ksi}$ - Column Modulus of Elasticity    |         |
|            | Bolt Information at Flange Connection (Beam Side):                                                |         |
|            | 1 in - Bolt Size                                                                                  |         |
|            | A490-SC(B) - Bolting Category                                                                     |         |
|            | $d_b = 1 \text{ in}$ - Bolt Diameter<br>$F_{+} = 113 \text{ ksi}$ - Bolt Nominal Tensile Strength |         |
|            | $F_{nv} = 68 \text{ ksi}$ - Bolt Nominal Shear Strength                                           |         |
|            | $N_s=1$ - Number of Slip Planes                                                                   |         |
|            | OVS - Bolt Hole Type at Plate                                                                     |         |
|            | STD - Bolt Hole Type at Beam                                                                      |         |
|            | Bolt Information at Web Connection (Beam Side):                                                   |         |
|            | A490N - Bolting Category                                                                          |         |
|            | $d_b=1 { m in}$ - Bolt Diameter                                                                   |         |
|            | $F_{nt}=113~{ m ksi}$ - Bolt Nominal Tensile Strength                                             |         |
|            | $F_{nv}=68~{ m ksi}$ - Bolt Nominal Shear Strength                                                |         |
|            | $N_s = 1$ - Number of Shear Planes                                                                |         |
|            | STD - Bolt Hole Type at Beam                                                                      |         |
|            | Weld Information at Flange Connection (Column Side):                                              |         |
|            | E70XX - Weld Classification                                                                       |         |
|            | $W=0.5~{ m in}$ - Fillet Weld Size                                                                |         |
|            | $F_{EXX}=70~{ m ksi}$ - Filler Metal Classification Strength                                      |         |
|            | Weld Information at Web Connection (Column Side):                                                 |         |
|            | $W = 0.5 	ext{ in - Fillet Weld Size}$                                                            |         |
|            | $F_{EXX}=70~{ m ksi}$ - Filler Metal Classification Strength                                      |         |



| REFERENCES                | CALCULATIONS                                                                                                    | RESULTS |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|                           | Flange Plate Connection   AISC 360-16 LRFD                                                                      |         |  |  |  |
|                           | Flange Plate Geometry:                                                                                          |         |  |  |  |
|                           | $b_{fp}=16~{ m in}$ - Flange Plate Width                                                                        |         |  |  |  |
|                           | $L_{fp}=45~{ m in}$ - Flange Plate Length                                                                       |         |  |  |  |
|                           | $t_{fp}=1.5~{ m in}$ - Flange Plate Thickness                                                                   |         |  |  |  |
|                           | Flange Plate Material Grade:                                                                                    |         |  |  |  |
|                           | $F_{yp} = 50$ ksi - Flange Plate Yield Stress<br>$F_{i} = 65$ ksi - Flange Plate Tensile Stress                 |         |  |  |  |
|                           | $\Gamma_{up} = 00$ km - hange hate lensie Stress                                                                |         |  |  |  |
|                           | $n_r = 4$ - Number of Bolt Rows                                                                                 |         |  |  |  |
|                           | $g_a = 5.5 ~{ m in}$ - Bolt Gage                                                                                |         |  |  |  |
|                           | $s_r=3~{ m in}$ - Bolt Row Spacing                                                                              |         |  |  |  |
|                           | $n_c = 12$ - Number of Bolt Columns                                                                             |         |  |  |  |
|                           | Distances:                                                                                                      |         |  |  |  |
|                           | $L_{ev\_bf}=2~{ m in}$ - Vertical Edge Distance on Beam Flange                                                  |         |  |  |  |
|                           | $L_{eh\_bf} = 1.25~{ m in}$ - Horizontal Edge Distance on Beam Flange                                           |         |  |  |  |
|                           | $L_{ev\_bf}=2~{ m in}$ - Vertical Edge Distance on Beam Flange                                                  |         |  |  |  |
|                           | $L_{eh\_fp}=2.25~{ m in}$ - Horizontal Edge Distance on Flange Plate                                            |         |  |  |  |
|                           | $L_{b\_fp} = 10~{ m in}$ - Unbraced Length at Flange Plate                                                      |         |  |  |  |
|                           | Check No. 1: Connection Detailing Limitations Check at Beam Side                                                |         |  |  |  |
|                           | Detailing Limitations Limit Value (in) Actual Value (in) DCR Result                                             |         |  |  |  |
|                           | Minimum Bolt Gage         5.125         5.500         0.932         PASS                                        |         |  |  |  |
|                           | Minimum Bolt Row Spacing         2.667         3.000         0.889         PASS                                 |         |  |  |  |
|                           | Maximum Bolt Row Spacing6.0003.0000.500PASS                                                                     |         |  |  |  |
|                           | Minimum Bolt Column Spacing2.6673.0000.889PASS                                                                  |         |  |  |  |
|                           | Maximum Bolt Column Spacing6.0003.0000.500PASS                                                                  |         |  |  |  |
|                           | Plate Minimum Vertical Edge Distance1.3752.0000.688PASS                                                         |         |  |  |  |
|                           | Plate Minimum Horizontal Edge Distance1.3752.2500.611PASS                                                       |         |  |  |  |
|                           | Beam Minimum Vertical Edge Distance1.2502.0000.625PASS                                                          |         |  |  |  |
|                           | Beam Minimum Horizontal Edge Distance1.2501.000PASS                                                             |         |  |  |  |
|                           | Result:                                                                                                         | PASS    |  |  |  |
|                           | Demand over Capacity Ratio                                                                                      |         |  |  |  |
|                           | $DCR = \frac{d}{c} = \frac{(1.25)}{(1.25)} = 1$                                                                 |         |  |  |  |
|                           | Check No. 2: Design Capacity of the Bolts in Shear                                                              |         |  |  |  |
|                           | $P_{uF}$ - Equivalent Flange Force from Strong Axis Moment                                                      |         |  |  |  |
|                           | M $D$                                                                                                           |         |  |  |  |
|                           | $P_{uF}=rac{M_{ux}}{\left(d_{bm}-t_{fb} ight)}+rac{F_{u}}{2}$                                                 |         |  |  |  |
|                           |                                                                                                                 |         |  |  |  |
|                           | $P_{\rm r} = -\frac{(500 \text{ kipft})}{(250 \text{ kip})}$                                                    |         |  |  |  |
|                           | $\Gamma_{uF} = {((28.1 	ext{ in}) - (1.34 	ext{ in}))}^+ {(28.1 	ext{ in})}^-$                                  |         |  |  |  |
|                           |                                                                                                                 |         |  |  |  |
|                           | $P_{uF}=349.22$ кір                                                                                             |         |  |  |  |
|                           | $\phi=0.85$ - Bolt Shear Resistance Factor                                                                      |         |  |  |  |
|                           | $\mu=0.5$ - Mean Slip Coefficient                                                                               |         |  |  |  |
|                           | $D_u = 1.13$<br>$h_f = 0.85$ - Filler Factor for Slip Critical Bolts                                            |         |  |  |  |
|                           | $d_b=1~{ m in}$ - Bolt Diameter                                                                                 |         |  |  |  |
|                           | $T_b=64~{ m kip}$ - Minimum Bolt Pretension                                                                     |         |  |  |  |
|                           | $N_s=1$ - Number of Slip Planes                                                                                 |         |  |  |  |
|                           | $n_r=4$ - Number of Bolt Columns                                                                                |         |  |  |  |
| AISC 360-16 Chapter J3.8  | $\phi R_{r}$ - Design Bolt Shear Capacity                                                                       |         |  |  |  |
| Eq. (J3-4)                |                                                                                                                 |         |  |  |  |
|                           | $\phi R_n = \phi \ \mu \ D_u \ h_f \ T_b \ N_s \ n_r \ n_c$                                                     |         |  |  |  |
|                           | $dR = (0.85) \times (0.5) \times (1.12) \times (0.85) \times (64 \text{ km}) \times (1) \times (4) \times (12)$ |         |  |  |  |
|                           | $\varphi_{11n} = (0.00) \times (0.0) \times (0.00) \times (04 \text{ kip}) \times (1) \times (4) \times (12)$   |         |  |  |  |
|                           | $\phi R_n = 1254 ~{ m kip}$                                                                                     |         |  |  |  |
|                           | Result:                                                                                                         | PASS    |  |  |  |
|                           | Demand over Capacity Ratio                                                                                      |         |  |  |  |
|                           | $DCR = rac{P_{uF}}{\phi R_n} = rac{(349.22 	ext{ kip})}{(1254 	ext{ kip})} = 0.27847$                         |         |  |  |  |
|                           | Check No. 3: Design Bolt Bearing Capacity of the Flange Plate                                                   |         |  |  |  |
|                           | Calculate the bolt bearing capacity of the flange plate.                                                        |         |  |  |  |
|                           | $\phi=0.75$ - Bolt Bearing Resistance Factor                                                                    |         |  |  |  |
|                           | $d_b=1~{ m in}$ - Bolt Diameter                                                                                 |         |  |  |  |
|                           | $t_{fp}=1.5~{ m in}$ - Flange Plate Thickness                                                                   |         |  |  |  |
|                           | $r_{up} = 00$ KSI - Fidinge Plate lensile Stress<br>$n_{up} = 12$ Number of Polt Columns                        |         |  |  |  |
|                           | $n_c = 12$ - Number of Bolt Columns $n_r = 4$ - Number of Bolt Rows                                             |         |  |  |  |
| AISC 360-16 Chapter J3.10 | $\phi R_{n\_bearing}$ - Design Bolt Bearing Capacity of Section                                                 |         |  |  |  |
| ⊑ү. (ј3-6а)               |                                                                                                                 |         |  |  |  |
|                           | $\phi R_{n\_bearing} = \phi \ 2.4 \ d_b \ t_{fp} \ F_{up} \ n_c \ n_r$                                          |         |  |  |  |





# $\phi R_{n\_bearing} = 8424 ext{ kip}$

## Calculate the clear distance of outer bolts on flange plate.

 $L_{ev\_fp}=2 ext{ in}$  - Vertical Edge Distance on Flange Plate

 $d_h = 1.25~{
m in}$  - Vertical Bolt Hole Dimension at Plate

 $l_{c1}$  - Clear Distance at First Bolt Row

$$l_{c1} = L_{ev\_fp} - rac{d_h}{2}$$

$$l_{c1} = (2 ext{ in}) - rac{(1.25 ext{ in})}{2}$$

$$l_{c1} = 1.375$$
 in

#### Calculate the clear distance of inner bolts on flange plate.

 $s_c=3~{
m in}$  - Bolt Column Spacing

 $d_h = 1.25~{
m in}$  - Vertical Bolt Hole Dimension at Plate

 $l_{c2}\,$  - Clear Distance at Rest of Bolts

 $l_{c2} = s_c - d_h$ 

$$l_{c2} = (3 ext{ in}) - (1.25 ext{ in})$$

 $l_{c2}=1.75~{
m in}$ 

Calculate the bolt tear-out capacity of the flange plate.  $l_{c1}=1.375~{
m in}$  - Clear Distance at First Bolt Row  $l_{c2}=1.75~{
m in}$  - Clear Distance at Rest of Bolts  $t_{fp}=1.5~{
m in}$  - Flange Plate Thickness  $F_{up}=65~{
m ksi}$  - Flange Plate Tensile Stress  $n_c=12$  - Number of Bolt Columns  $n_r=4$  - Number of Bolt Rows  $\phi=0.75$  - Bolt Bearing Resistance Factor AISC 360-16 Chapter J3.10 Eq. (J3-6c)  $\phi R_{n\_tearout}$  - Design Bolt Tear-out Capacity of Section

 $\phi R_{n\_tearout} = \phi \, \left[ 1.2 \, l_{c1} \, t_{fp} \, F_{up} \, n_r + 1.2 \, l_{c2} \, t_{fp} \, F_{up} \, n_r \, \left( n_c - 1 
ight) 
ight]$ 

 $\phi R_{n\_tearout} = (0.75) \times [1.2 \times (1.375 \text{ in}) \times (1.5 \text{ in}) \times (65 \text{ ksi}) \times (4) + 1.2 \times (1.75 \text{ in}) \times (1.5 \text{ in}) \times (65 \text{ ksi}) \times (4) \times ((12) - 1)]$ 

|                                          | $\phi R_{n\_tearout} = 7239.4~{ m kip}$                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                          | Determine the governing bearing and tear-out capacity of the bolt group on flange plate.                                                                                                                                                                                                                                                                                                                                                                            |      |
| AISC 360-16 Chapter J3.10<br>Fg. (J3-6a) | $\phi R_{n\_bearing} = 8424~{ m kip}$ - Design Bolt Bearing Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                     |      |
| AISC 360-16 Chapter J3.10                | $\phi R_{n\ tearout}=7239.4~{ m kip}$ - Design Bolt Tear-out Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                    |      |
| AISC 360-16 Chapter J3.10                | $\phi R_n$ - Governing Design Capacity                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                          | $\phi R_n = min\left(\phi R_{n\_bearing}, \phi R_{n\_tearout} ight)$                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                          | $\phi R_n = min\left(\left(8424 \text{ kip}\right), \left(7239.4 \text{ kip}\right)\right)$                                                                                                                                                                                                                                                                                                                                                                         |      |
|                                          | $\phi R_n=7239.4~{ m kip}$                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                          | Result:Demand over Capacity Ratio $DCR = \frac{P_{uF}}{\phi R_n} = \frac{(349.22 \text{ kip})}{(7239.4 \text{ kip})} = 0.048238$                                                                                                                                                                                                                                                                                                                                    | PASS |
|                                          | Check No. 4: Design Bolt Bearing Capacity of the Beam Flange                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| AISC 360-16 Chapter J3.10<br>Eq. (J3-6a) | $ \begin{array}{l} \textbf{Calculate the bolt bearing capacity of the beam flange.} \\ \phi = 0.75 \text{ - Bolt Bearing Resistance Factor} \\ d_b = 1 \text{ in - Bolt Diameter} \\ t_{fb} = 1.34 \text{ in - Beam Flange Thickness} \\ F_{ub} = 65 \text{ ksi - Beam Tensile Stress} \\ n_c = 12 \text{ - Number of Bolt Columns} \\ n_r = 4 \text{ - Number of Bolt Rows} \\ \phi R_{n\_bearing} \text{ - Design Bolt Bearing Capacity of Section} \end{array} $ |      |
|                                          | $\phi R_{n\_bearing} = \phi \ 2.4 \ d_b \ t_{fb} \ F_{ub} \ n_c \ n_r$                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                          | $\phi R_{n\_bearing} = (0.75) 	imes 2.4 	imes (1 	ext{ in}) 	imes (1.34 	ext{ in}) 	imes (65 	ext{ ksi}) 	imes (12) 	imes (4)$                                                                                                                                                                                                                                                                                                                                      |      |
|                                          | $\phi R_{n\_bearing} = 7525.4~{ m kip}$                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                                          | Calculate the clear distance of outer bolts on beam flange. $L_{ev\_bf} = 2$ in - Vertical Edge Distance on Beam Flange $d_h = 1.125$ in - Vertical Bolt Hole Dimension at Beam $l_{c1}$ - Clear Distance at First Bolt Row $l_{c1} = L_{ev\_bf} - \frac{d_h}{2}$ $l_{c1} = (2 \text{ in}) - \frac{(1.125 \text{ in})}{2}$                                                                                                                                          |      |



|                                          | $l_{c1}=1.4375~{\rm in}$                                                                                                                                                                                                                         |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | Calculate the clear distance of inner bolts on beam flange.                                                                                                                                                                                      |
|                                          | $s_c = 3 \text{ in - Bolt Column Spacing}$<br>$d_l = 1.125  in - Vertical Bolt Hole Dimension at Beam$                                                                                                                                           |
|                                          | $l_{c2}$ - Clear Distance at Rest of Bolts                                                                                                                                                                                                       |
|                                          |                                                                                                                                                                                                                                                  |
|                                          | $a_{c2} = s_c - a_h$                                                                                                                                                                                                                             |
|                                          | $l_{c2} = (3 \ {\rm in}) - (1.125 \ {\rm in})$                                                                                                                                                                                                   |
|                                          | $l_{c2}=1.875~{ m in}$                                                                                                                                                                                                                           |
|                                          | Calculate the bolt tear-out capacity of the beam flange.                                                                                                                                                                                         |
|                                          | $l_{c1} = 1.4375 ~{ m in}$ - Clear Distance at First Bolt Row                                                                                                                                                                                    |
|                                          | $l_{c2}=1.875~{ m in}$ - Clear Distance at Rest of Bolts                                                                                                                                                                                         |
|                                          | $t_{fb}=1.34~{ m in}$ - Beam Flange Thickness                                                                                                                                                                                                    |
|                                          | $F_{ub}=65~{ m ksi}$ - Beam Tensile Stress                                                                                                                                                                                                       |
|                                          | $n_c=12$ - Number of Bolt Columns                                                                                                                                                                                                                |
|                                          | $n_r=4$ - Number of Bolt Rows                                                                                                                                                                                                                    |
|                                          | $\phi=0.75$ - Bolt Bearing Resistance Factor                                                                                                                                                                                                     |
| AISC 360-16 Chapter J3.10<br>Eq. (J3-6c) | $\phi R_{n\_tearout}$ - Design Bolt Tear-out Capacity of Section                                                                                                                                                                                 |
|                                          | $\phi R_{n\_tearout} = \phi  \left[ 1.2  l_{c1}  t_{fb}  F_{ub}  n_r + 1.2  l_{c2}  t_{fb}  F_{ub}  n_r   (n_c - 1)  ight]$                                                                                                                      |
|                                          | $\phi R_{n\_tearout} = (0.75) \times [1.2 \times (1.4375 \text{ in}) \times (1.34 \text{ in}) \times (65 \text{ ksi}) \times (4) + 1.2 \times (1.875 \text{ in}) \times (1.34 \text{ in}) \times (65 \text{ ksi}) \times (4) \times ((12) - 1)]$ |
|                                          | $\phi R_{n\_tearout} = 6917.9 ~{ m kip}$                                                                                                                                                                                                         |
|                                          | Determine the governing bearing and tear-out capacity of the bolt group on beam flange.                                                                                                                                                          |
| AISC 360-16 Chapter J3.10<br>Fg. (J3-6a) | $\phi R_{n\_bearing} = 7525.4~{ m kip}$ - Design Bolt Bearing Capacity of Section                                                                                                                                                                |
| AISC 360-16 Chapter J3.10<br>Eq. (J3-6c) | $\phi R_{n\_tearout} = 6917.9~{ m kip}$ - Design Bolt Tear-out Capacity of Section                                                                                                                                                               |
| AISC 360-16 Chapter J3.10                | $\phi R_n$ - Governing Design Capacity                                                                                                                                                                                                           |
|                                          | $\phi R_n = min\left(\phi R_{n\_bearing}, \phi R_{n\_tearout} ight)$                                                                                                                                                                             |
|                                          | $\phi R_n = min\left((7525.4~{ m kip}),(6917.9~{ m kip}) ight)$                                                                                                                                                                                  |
|                                          | $\phi R_n = 6917.9 ~{ m kip}$                                                                                                                                                                                                                    |
|                                          | Result                                                                                                                                                                                                                                           |

Result Demand over Capacity Ratio  $DCR = rac{P_{uF}}{\phi R_n} = rac{(349.22 ext{ kip})}{(6917.9 ext{ kip})} = 0.05048$ Check No. 5: Design Block Shear Capacity of the Flange Plate Calculate the net area of the flange plate subject to tension.  $t_{fp}=1.5~{
m in}$  - Flange Plate Thickness  $n_r=4$  - Number of Bolt Rows  $s_r=3~{
m in}$  - Bolt Row Spacing  $g_a = 5.5 \ {
m in}$  - Bolt Gage  $L_{eh\_fp}=2.25~{
m in}$  - Horizontal Edge Distance on Flange Plate  $d_h = 1.25 ~{
m in}$  - Vertical Bolt Hole Dimension at Plate  $A_{nt}\,$  - Net Area Subject to Tension (L-pattern)  $A_{nt} = t_{fp} \; \left[ (n_r - 2) \; s_r + g_a + L_{eh\_fp} - (n_r - 0.5) \; (d_h + 0.0625 \; {
m in}) 
ight]$  $A_{nt} = (1.5 ext{ in}) imes [((4) - 2) imes (3 ext{ in}) + (5.5 ext{ in}) + (2.25 ext{ in}) - ((4) - 0.5) imes ((1.25 ext{ in}) + (0.0625 ext{ in}))]$  $A_{nt}=13.734~{\rm in}^2$ Calculate the gross area of the flange plate subject to shear.  $t_{fp}=1.5~{
m in}$  - Flange Plate Thickness  $L_{ev\_fp}=2~{
m in}$  - Vertical Edge Distance on Flange Plate  $n_c=12$  - Number of Bolt Columns  $s_c=3~{
m in}$  - Bolt Column Spacing  $A_{gv}\,$  - Gross Area Subject to Shear (L-pattern)  $A_{gv} = t_{fp} \; \left[ L_{ev\_fp} + (n_c - 1) \; s_c 
ight]$ 

$$A_{gv} = (1.5 ext{ in}) imes [(2 ext{ in}) + ((12) - 1) imes (3 ext{ in})]$$

 $A_{gv}=52.5~{
m in}^2$ 

# Calculate the net area of the flange plate subject to shear.

 $t_{fp}=1.5~{
m in}$  - Flange Plate Thickness

 $L_{ev\_fp}=2~{
m in}$  - Vertical Edge Distance on Flange Plate

 $n_c=12$  - Number of Bolt Columns

 $s_c=3~{
m in}$  - Bolt Column Spacing

 $d_h = 1.25 ~{
m in}$  - Vertical Bolt Hole Dimension at Plate

 $A_{nv}\,$  - Net Area Subject to Shear (L-pattern)

$$A_{nv} = t_{fp} \, \left( L_{ev\_fp} + (n_c \, - \, 1) \, \, s_c - (n_c \, - \, 0.5) \, \left( d_h + 0.0625 \, \, {
m in} 
ight) 
ight)$$

 $A_{nv} = (1.5 ext{ in}) imes ((2 ext{ in}) + ((12) - 1) imes (3 ext{ in}) - ((12) - 0.5) imes ((1.25 ext{ in}) + (0.0625 ext{ in})))$ 





|                          | $A_{nv}=29.859~{\rm in}^2$                                                                                                                                                                                                                                                                                                     |      |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                          | Calculate the design block shear capacity of the flange plate.                                                                                                                                                                                                                                                                 |      |
|                          | $\phi=0.75$ - Block Shear Resistance Factor                                                                                                                                                                                                                                                                                    |      |
|                          | $F_{yp} = 50$ ksi - Flange Plate Yield Stress $F_{wp} = 65$ ksi - Flange Plate Tensile Stress                                                                                                                                                                                                                                  |      |
|                          | $U_{bs}=1$ - Uniformity factor for single line of bolts                                                                                                                                                                                                                                                                        |      |
|                          | $A_{gv}=52.5~{ m in}^2$ - Gross Area Subject to Shear (L-pattern)                                                                                                                                                                                                                                                              |      |
|                          | $A_{nv}=29.859~{ m in}^2$ - Net Area Subject to Shear (L-pattern)                                                                                                                                                                                                                                                              |      |
| AISC 360-16 Chapter I4.3 | $A_{nt}=13.734~{ m in}^2$ - Net Area Subject to Tension (L-pattern)                                                                                                                                                                                                                                                            |      |
| Éq. (J4-5)               | $\phi R_n$ - Design Block Shear Capacity of Section                                                                                                                                                                                                                                                                            |      |
|                          | $\phi R_n = \phi  \left( 0.6  F_{up}  A_{nv} + U_{bs}  F_{up}  A_{nt} \le 0.6  F_{yp}  A_{gv} + U_{bs}  F_{up}  A_{nt}  ight)$                                                                                                                                                                                                 |      |
|                          | $\phi R_n = (0.75) \times \left(0.6 \times (65 \text{ ksi}) \times \left(29.859 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(13.734 \text{ in}^2\right) \le 0.6 \times (50 \text{ ksi}) \times \left(52.5 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(13.734 \text{ in}^2\right)\right)$  |      |
|                          | $\phi R_n = 1542.9~{ m kip}$                                                                                                                                                                                                                                                                                                   | DASS |
|                          | Demand over Capacity Ratio                                                                                                                                                                                                                                                                                                     | PASS |
|                          | $DCR = rac{P_{uF}}{\phi R_n} = rac{(349.22 	ext{ kip})}{(1542.9 	ext{ kip})} = 0.22633$                                                                                                                                                                                                                                      |      |
|                          | Check No. 6: Design Block Shear Capacity of the Beam Flange                                                                                                                                                                                                                                                                    |      |
|                          | Calculate the net area of the beam flange subject to tension.                                                                                                                                                                                                                                                                  |      |
|                          | $t_{fb}=1.34~{ m in}$ - Beam Flange Thickness                                                                                                                                                                                                                                                                                  |      |
|                          | $b_{fb} = 14$ in - Beam Flange Width $a_{-} = 5.5$ in - Bolt Gage                                                                                                                                                                                                                                                              |      |
|                          | $g_a=5.5~{ m m}$ - Bolt Gage $d_h=1.125~{ m in}$ - Vertical Bolt Hole Dimension at Beam                                                                                                                                                                                                                                        |      |
|                          | $A_{nt}$ - Net Area Subject to Tension (2L-pattern)                                                                                                                                                                                                                                                                            |      |
|                          | $A_{nt} = t_{fb}  \left[ b_{fb} - g_a - (d_h + 0.0625 \; { m in})  ight]$                                                                                                                                                                                                                                                      |      |
|                          | $A_{nt} = (1.34~{\rm in}) \times [(14~{\rm in}) - (5.5~{\rm in}) - ((1.125~{\rm in}) + (0.0625~{\rm in}))]$                                                                                                                                                                                                                    |      |
|                          | $A_{nt}=9.7988~{\rm in}^2$                                                                                                                                                                                                                                                                                                     |      |
|                          | Calculate the gross area of the beam flange subject to shear.                                                                                                                                                                                                                                                                  |      |
|                          | $t_{fb}=1.34~{ m in}$ - Beam Flange Thickness                                                                                                                                                                                                                                                                                  |      |
|                          | $n_c = 12$ - Number of Bolt Columns                                                                                                                                                                                                                                                                                            |      |
|                          | $s_c=3~{ m in}$ - Bolt Column Spacing                                                                                                                                                                                                                                                                                          |      |
|                          | $A_{gv}$ - Gross Area Subject to Shear (2L-pattern)                                                                                                                                                                                                                                                                            |      |
|                          | $A_{gv} = 2  t_{fb}  \left[ L_{ev\_bf} + (n_c  -  1)   s_c  ight]$                                                                                                                                                                                                                                                             |      |
|                          | $A_{gv} = 2 \times (1.34 \text{ in}) \times [(2 \text{ in}) + ((12) - 1) \times (3 \text{ in})]$                                                                                                                                                                                                                               |      |
|                          | $A_{gv}=93.8~{\rm in}^2$                                                                                                                                                                                                                                                                                                       |      |
|                          | Calculate the net area of the beam flange subject to shear.                                                                                                                                                                                                                                                                    |      |
|                          | $t_{fb}=1.34~{ m in}$ - Beam Flange Thickness                                                                                                                                                                                                                                                                                  |      |
|                          | $L_{ev\_bf}=2~{ m in}$ - Vertical Edge Distance on Beam Flange $n_{+}=12$ - Number of Bolt Columns                                                                                                                                                                                                                             |      |
|                          | $s_c=3~{ m in}$ - Bolt Column Spacing                                                                                                                                                                                                                                                                                          |      |
|                          | $d_h = 1.125 	ext{ in - Vertical Bolt Hole Dimension at Beam}$                                                                                                                                                                                                                                                                 |      |
|                          | $A_{nv}$ - Net Area Subject to Shear (2L-pattern)                                                                                                                                                                                                                                                                              |      |
|                          | $A_{nv} = 2  t_{fb}  \left( L_{ev\_bf} + (n_c - 1)   s_c - (n_c - 0.5)  \left( d_h + 0.0625   { m in}  ight)  ight)$                                                                                                                                                                                                           |      |
|                          | $A_{nv} = 2 	imes (1.34 	ext{ in}) 	imes ((2 	ext{ in}) + ((12) - 1) 	imes (3 	ext{ in}) - ((12) - 0.5) 	imes ((1.125 	ext{ in}) + (0.0625 	ext{ in})))$                                                                                                                                                                       |      |
|                          | $A_{nv}=57.201~{\rm in}^2$                                                                                                                                                                                                                                                                                                     |      |
|                          | Calculate the design block shear capacity of the beam flange.                                                                                                                                                                                                                                                                  |      |
|                          | $\phi=0.75$ - Block Shear Resistance Factor                                                                                                                                                                                                                                                                                    |      |
|                          | $F_{yb} = 50~{ m ksi}$ - Beam field Stress $F_{ub} = 65~{ m ksi}$ - Beam Tensile Stress                                                                                                                                                                                                                                        |      |
|                          | $U_{bs}=1$ - Uniformity factor for single line of bolts                                                                                                                                                                                                                                                                        |      |
|                          | $A_{gv}=93.8~{ m in}^2$ - Gross Area Subject to Shear (2L-pattern)                                                                                                                                                                                                                                                             |      |
|                          | $A_{nv} = 57.201 \text{ in}^2$ - Net Area Subject to Shear (2L-pattern)                                                                                                                                                                                                                                                        |      |
| AISC 360-16 Chapter J4.3 | $A_{nt} = 3.1300 \text{ III}$ - Net Area Subject to Tension (2L-pattern)<br>$\phi R_{n}$ - Design Block Shear Capacity of Section                                                                                                                                                                                              |      |
| Eq. (J4-5)               |                                                                                                                                                                                                                                                                                                                                |      |
|                          | $\phi R_n = \phi  \left( 0.6  F_{ub}  A_{nv} + U_{bs}  F_{ub}  A_{nt} \le 0.6  F_{yb}  A_{gv} + U_{bs}  F_{ub}  A_{nt}  ight)$                                                                                                                                                                                                 |      |
|                          | $\phi R_n = (0.75) \times \left(0.6 \times (65 \text{ ksi}) \times \left(57.201 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(9.7988 \text{ in}^2\right) \le 0.6 \times (50 \text{ ksi}) \times \left(93.8 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(9.7988 \text{ in}^2\right) \right)$ |      |
|                          | $\phi R_n = 2150.8 ~{ m kip}$                                                                                                                                                                                                                                                                                                  |      |
|                          | Result:                                                                                                                                                                                                                                                                                                                        | PASS |
|                          | Demand over Capacity Ratio                                                                                                                                                                                                                                                                                                     |      |
|                          | $DCR = \frac{1}{\phi R_n} = \frac{1}{(2150.8 \text{ kip})} = 0.16236$                                                                                                                                                                                                                                                          |      |

Check No. 7: Design Capacity of the Flange Plate in Tension





|                                                                                         | Calculate the tensile yielding capacity of the flange plate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                         | $\phi=0.9$ - Tensile Yielding Resistance Factor $F_{ m em}=50~{ m ksi}$ - Flange Plate Yield Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                                                                         | $t_{fp}=1.5~{ m in}$ - Flange Plate Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                         | $b_{fp}=16~{ m in}$ - Flange Plate Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| AISC 360-16 Chapter J4.1<br>Eq. (J4-1)                                                  | $\phi R_{n\_ty}$ - Design Tension Yielding Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                                                                                         | $\phi R_{n\_ty} = \phi \ F_{yp} \ t_{fp} \ b_{fp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                                                                                         | $\phi R_{n\_ty} = (0.9) 	imes (50 	ext{ ksi}) 	imes (1.5 	ext{ in}) 	imes (16 	ext{ in})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                                                                         | $\phi B_{\rm m}$ to $= 1080$ kip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                                                                         | Calculate the tensile rupture capacity of the flange plate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                         | $\phi=0.75$ - Tensile Rupture Resistance Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                                                                                         | $F_{up}=65~\mathrm{ksi}$ - Flange Plate Tensile Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                                                                                         | $t_{fp} = 1.5 ~{ m m}$ - Flange Plate Thickness $b_{fn} = 16 ~{ m in}$ - Flange Plate Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                         | $n_r=4$ - Number of Bolt Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| NISC 360-16 Chapter 1/ 1                                                                | $d_h = 1.25 ~{ m in}$ - Horizontal Bolt Hole Dimension at Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Eq. (J4-2)                                                                              | $\phi R_{n\_tr}$ - Design Tension Rupture Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                         | $\phi R_{n\_tr} = \phi \; F_{up}  t_{fp} \; [b_{fp} - n_r \; (d_h + 0.0625 \; { m in})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                                                                                         | $\phi R_{n\_tr} = (0.75) 	imes (65 	ext{ ksi}) 	imes (1.5 	ext{ in}) 	imes [(16 	ext{ in}) - (4) 	imes ((1.25 	ext{ in}) + (0.0625 	ext{ in}))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                                                                         | $\phi R_{n\_tr} = 786.09 ~{ m kip}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| AISC 360-16 Chapter  4.1                                                                | Determine the governing tensile capacity of the flange plate.<br>$\phi B_{\rm res} = 1080  {\rm kip}$ - Design Tension Yielding Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Éq. (J́4-1)<br>AISC 360-16 Chapter I4.1                                                 | $\phi R_{n_ty} = 1080 \text{ klp}$ - Design lension fielding Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Éq. (J4-2)<br>AISC 360-16 Chapter J4.2                                                  | $\phi R_{n_tr} = 780.09 \text{ kip}$ - Design lension Rupture Capacity of Section $\phi R_n$ - Governing Design Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                                                                                         | $\phi R_n = min\left(\phi R_{n\_ty}, \phi R_{n\_tr} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                                                                                         | $\phi R = min((1080 \text{ kin}))(786.00 \text{ kin}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                         | $\varphi R_n = min((1000 \text{ klp}), (100.03 \text{ klp}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                         | $\phi R_n = 780.09 	ext{ klp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS |
|                                                                                         | Demand over Capacity Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                                                                                         | $DCR = rac{P_{uF}}{\phi R_n} = rac{(349.22 	ext{ kip})}{(786.09 	ext{ kip})} = 0.44424$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{re} = 1.24$ in Ream Flange Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in TensionCalculate the tensile rupture capacity of the flange plate. $\phi = 0.75$ - Tensile Rupture Resistance Factor $F_{ub} = 65$ ksi - Beam Tensile Stress $A_{bm} = 57.1$ in <sup>2</sup> - Beam Area $t_{fb} = 1.34$ in - Beam Flange Thickness $d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam $n_r = 4$ - Number of Bolt Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_c = 12$ - Number of Bolt Columns<br>$c_r = 3$ in _ Bolt Columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                                                                                         | Check No. 8: Design Capacity of the Beam in TensionCalculate the tensile rupture capacity of the flange plate. $\phi = 0.75$ - Tensile Rupture Resistance Factor $F_{ub} = 65$ ksi - Beam Tensile Stress $A_{bm} = 57.1$ in <sup>2</sup> - Beam Area $t_{fb} = 1.34$ in - Beam Flange Thickness $d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam $n_r = 4$ - Number of Bolt Rows $n_c = 12$ - Number of Bolt Columns $s_c = 3$ in - Bolt Column Spacing $\overline{y} = 3.0789$ in - Centroid of WT section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in TensionCalculate the tensile rupture capacity of the flange plate. $\phi = 0.75$ - Tensile Rupture Resistance Factor $F_{ub} = 65$ ksi - Beam Tensile Stress $A_{bm} = 57.1$ in <sup>2</sup> - Beam Area $t_{fb} = 1.34$ in - Beam Flange Thickness $d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam $n_r = 4$ - Number of Bolt Rows $n_c = 12$ - Number of Bolt Columns $s_c = 3$ in - Bolt Column Spacing $\bar{y} = 3.0789$ in - Centroid of WT section $U$ - Shear Lag Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_c = 12$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$\overline{y} = 3.0789$ in - Centroid of WT section<br>U - Shear Lag Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_c = 12$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$\bar{y} = 3.0789$ in - Centroid of WT section<br>U - Shear Lag Factor<br>$U = 1 - \frac{\bar{y}}{(n_c - 1) s_c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate. $\phi = 0.75$ - Tensile Rupture Resistance Factor $F_{ub} = 65$ ksi - Beam Tensile Stress $A_{drm} = 57.1$ in <sup>2</sup> - Beam Area $t_{fb} = 1.34$ in - Beam Flange Thickness $d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam $n_r = 4$ - Number of Bolt Rows $n_c = 12$ - Number of Bolt Columns $s_c = 3$ in - Bolt Column Spacing $\tilde{y} = 3.0789$ in - Centroid of WT section $U$ - Shear Lag Factor $U = 1 - \frac{\tilde{y}}{(n_c - 1) s_c}$ $U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ab} = 65$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_c = 12$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$\tilde{y} = 3.0789$ in - Centroid of WT section<br>U - Shear Lag Factor<br>$U = 1 - \frac{\tilde{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)<br>AISC 360-16 Chapter J4.1<br>Eq. (J4-2) | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65 \text{ ksi}$ - Beam Tensile Stress<br>$A_{bm} = 57.1 \text{ in}^2$ - Beam Area<br>$t_{fp} = 1.34 \text{ in}$ - Beam Flange Thickness<br>$d_h = 1.125 \text{ in}$ - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_c = 12$ - Number of Bolt Columns<br>$s_c = 3 \text{ in}$ - Bolt Columns Sach<br>y = 3.0789  in - Centroid of WT section<br>U - Shear Lag Factor<br>$U = 1 - \frac{\bar{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{n_c tr}$ - Design Tension Rupture Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)<br>AISC 360-16 Chapter J4.1<br>Eq. (J4-2) | Check No. 3: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{am} = 57.1 \text{ in}^2$ - Beam Area<br>$t_{fb} = 1.34$ in - Beam Area<br>$t_{fb} = 1.34$ in - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_c = 12$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Columns<br>$s_c = 3$ in - Bolt Columns Sacing<br>$\tilde{y} = 3.0789$ in - Centroid of WT section<br>U - Shear Lag Factor<br>$U = 1 - \frac{\tilde{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{n,tr}$ - Design Tension Rupture Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)<br>AISC 360-16 Chapter J4.1<br>Eq. (J4-2) | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75 \cdot \text{Tensile Rupture Resistance Factor}$<br>$F_{ub} = 65$ ks i - Beam Tensile Stress<br>$A_{bm} = 57.1 \text{ in}^2 \cdot \text{Beam Area}$<br>$t_{fb} = 1.34 \text{ in} \cdot \text{Beam Flange Thickness}$<br>$d_h = 1.125 \text{ in} \cdot \text{Horizontal Bolt Hole Dimension at Beam}$<br>$n_r = 4 \cdot \text{Number of Bolt Rows}$<br>$n_e = 12 \cdot \text{Number of Bolt Rows}$<br>$n_e = 12 \cdot \text{Number of Bolt Columns}$<br>$s_e = 3 \text{ in} \cdot \text{Bolt Column Spacing}$<br>$\tilde{y} = 3.0789 \text{ in} \cdot \text{Centroid of WT section}$<br>$U = 1 - \frac{\tilde{y}}{(n_e - 1) s_e}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{n, tr} \cdot \text{Design Tension Rupture Capacity of Section}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 3: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ . Tensile Rupture Resistance Factor<br>$F_{wh} = 65$ ksi - Beam Tensile Stress<br>$A_{born} = 57.1 \text{ in}^2$ - Beam Area<br>$t_{fb} = 1.34$ in - Beam Flange Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ . Number of Bolt Columns<br>$s_c = 12$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$\bar{y} = 3.0789$ in - Centroid of WT section<br>$U = 1 - \frac{\bar{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{n,tr}$ - Design Tension Rupture Capacity of Section<br>$\phi R_{n,tr} = \phi F_{ub} U [0.5 A_{bm} - n_r (d_h + 0.0625 \text{ in}) t_B]$<br>$\phi R_{n,tr} = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0625 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{n,tr} = 980.61 \text{ kip}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)<br>AISC 360-16 Chapter J4.1<br>Eq. (J4-2) | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the twolife rupture capacity of the flange plate.<br>$\phi = 0.75$ . Tensile Rupture Resistance Factor<br>$F_{ub}^{-} = 65$ ksi - Beam Tensile Stress<br>$A_{un} = 57.1 \text{ In}^2$ . Beam Area<br>$t_{ln} = 1.34$ in - Beam Area<br>$t_{ln} = 1.34$ in - Beam Area<br>$t_{ln} = 1.34$ in - Beam Flange Thickness<br>( $d_{ln} = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Columns<br>s $a_r = 3$ in - Bolt Column Spacing<br>$\overline{g} = 3.0789$ in - Centroid of WT section<br>$U = 1 = \frac{\overline{y}}{(n_c - 1) s_c}$<br>$U = 1 = \frac{\overline{y}}{(n_c - 1) s_c}$<br>$U = -1 = \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>$U = 0.9067$ $\phi R_{n_s tr} \cdot \text{Design Tension Rupture Capacity of Section\phi R_{n_s tr} = \phi F_{ub} U [0.5 A_{om} - n_r (d_h + 0.0625 \text{ in}) t_{fb}]\phi R_{n_s tr} = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0625 \text{ in})) \times (1.34 \text{ in})]\phi R_{n_s tr} = 980.61 \text{ kip}Result:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 5: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ . Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensile Stress<br>$A_{un} = 57.1 \text{ in}^2$ - Beam Area<br>$t_{fh} = 1.34 \text{ in}$ - Beam Area<br>$t_{fh} = 1.34 \text{ in}$ - Beam Area<br>$t_{fh} = 1.25 \text{ in}$ - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rolum Spacing<br>$\overline{y} = -3.0789 \text{ in}$ - Centroid of WT section<br>$U = 1 - \frac{\overline{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{n,tr}$ - Design Tension Rupture Capacity of Section<br>$\phi R_{n,tr} = \phi F_{ub} U [0.5 A_{lon} - n_r (d_h + 0.0625 \text{ in}) t_{fh}]$<br>$\phi R_n t_r = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0625 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{n,tr} = 980.61 \text{ kip}$<br><b>Pesulti</b><br>Demand over Capacity Ratio<br>$D(R = -\frac{R_{re}}{R_{re}} - \frac{(340.22 \text{ km})}{R_{re}} = 0.35612$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculates the tensile rupture Resistance Fator<br>$F_{ab} = 0.75$ - Tensile Rupture Resistance Fator<br>$F_{ab} = 65$ ksi - Beam Tensile Stress<br>$A_{beam} = 57.1 \text{ in}^3$ - Beam Area<br>$I_{pp} = 1.34$ in - Beam Finale Thickness<br>$d_h = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Rows<br>$n_e = 12$ - Number of Bolt Columns<br>$s_e = 3$ in - Bolt Columns<br>$s_e = 3$ in - Bolt Column Sacchara<br>$T = -\frac{y}{(n_e - 1) s_e}$<br>$U = 1 - \frac{y}{(n_e - 1) s_e}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{n,tr} - Design Tension Rupture Capacity of Section \phi R_{n,tr} = \phi F_{ab} U [0.5 A_{bm} - n_r (d_h + 0.0625 \text{ in}) t_{fb}]\phi R_{n,tr} = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0625 \text{ in})) \times (1.34 \text{ in})]\phi R_{n,tr} - 980.61 \text{ kip}Persuit:Dermand over Capacity RatioDCR = \frac{F_{ab}}{\sigma R_{ab}r} = \frac{(34022 \text{ kp})}{(34042 \text{ kp})} = 0.35612Charded to Abelian Column State State$                                                                                                                                                                                                                                                                                                                                          | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 3: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture Resistance Factor<br>$F_{ub} = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ub} = 65$ ksi - Beam Tensite Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$E_{tp} = 1.34$ in - Beam Finage Thickness<br>$d_{t} = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Columns<br>$s_e = 3$ in - Bolt Columns<br>g = 3.0789 in - Centroid of WT section<br>$U = 1 - \frac{y}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 in)}{((12) - 1) \times (3 in)}$<br>U = 0.9067<br>$\phi R_{n,tr} - Design Tension Rupture Capacity of Section \phi R_{n,tr} = \phi F_{ub} U [0.5 A_{bm} - n_r (d_b + 0.0625 in) t_B]\phi R_{n,tr} = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 in^2) - (4) \times ((1.125 in) + (0.0625 in)) \times (1.34 in)]\phi R_{n,tr} = 980.61 \text{ kip}Facult:Derma dover Capacity RalioDC'R = \frac{E_{r,r}}{\phi R_{r,r}} = \frac{(340.22 \text{ kip})}{(30.14 \text{ kip})} = 0.35612Check No. 9: Design Capacity of the Flange Plate in CompressionCalculate the compression buckling capacity of the Flange Plate.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ab} = 05$ ksi - Beam Tensile Stress<br>$A_{bm} = 57.1$ in <sup>2</sup> - Beam Area<br>$t_{p5} = 1.34$ in - Heam Flange Thickness<br>$d_{h} = 1.125$ in - Horizontal Bolt Hole Dimension at Beam<br>$n_r = 4$ - Number of Bolt Columns<br>$s_r = 3$ in - Bolt Column Spacing<br>$\overline{y} = 3.0789$ in - Centrold of WT section<br>$U = 1 - \frac{\overline{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{\overline{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 in)}{((12) - 1) \times (3 in)}$<br>U = 0.9067<br>$dR_{n,tr} - Design Tension Rupture Capacity of Section \phi R_{n,tr} = \phi F_{ab} U [0.5 A_{bm} - n_r (d_b + 0.0625 in) t_{fb}]\phi R_{n,tr} = \phi S.(57.1 in2) - (4) \times ((1.125 in) + (0.0625 in)) \times (1.34 in)]\phi R_{n,tr} = 980.61 kipResult:Demand over Capacity RatioDCR = \frac{(40.27 2 in)}{(40.20 - 4)} - \frac{(40.27 2 in)}{(40.20 - 4)} - 0.35612Check No. 9: Design Capacity of the Flange Plate in CompressionCalculate the compression buckling capacity of the Flange Plate.\phi = 0.9 \cdot 0 or Compression Resistance Factor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 8: Design Capacity of the Beam in Tension<br>Calculate the tensile rupture capacity of the flange plate.<br>$\phi = 0.75$ - Tensile Rupture Resistance Factor<br>$F_{ch} = 60$ kai - Beam Flange Trickness<br>$A_{bmi} = 57.1$ in <sup>2</sup> - Beam Area<br>$Y_{\mu} = 1.31$ in - Beam Flange Trickness<br>$d_{\mu} = 1.125$ in - Horizontal Bott Hole Dimension at Beam<br>$n_{\mu} = 4$ - Number of Bott Columns<br>$n_{\mu} = 4$ - Number of Bott Columns<br>$n_{\mu} = 4$ - Number of Bott Columns<br>$n_{\mu} = 3$ in - Bott Columns Spacing<br>$\overline{g} = -3.0789$ in - Centroid of WT section<br>$U = 1 - \frac{\overline{y}}{(n_{\mu} - 1) \cdot s_{\mu}}$<br>$U = 1 - \frac{(3.0789 im)}{((12) - 1) \times (3 im)}$<br>U = 0.9067<br>$dR_{n}$ $c$ - Design Tension Rupture Capacity of Section<br>$\phi R_{n}$ $c_{\mu} = \phi F_{ab} U [0.5 A_{bm} - n_{\mu} (d_{h} + 0.0625 im) t_{fb}]$<br>$\phi R_{n}$ $c_{\mu} = 980.61$ kip<br><b>Fessel:</b><br>Demand over Capacity Ratio<br>$DCR = \frac{R_{\mu}}{\delta d_{h,\mu}} = \frac{(3.9789)}{(38101 \cdot 14p)} = 0.35612$<br><b>Check No. 3: Design Capacity of the Flange Plate In Compression</b><br><b>Calculate the compression Resistance Factor</b><br>$\phi = 0.9 \cdot \text{ Compression Resistance Factor F_{\mu\nu} = -30 \text{ kai} - \text{ Flange Plate Yield Stress}\delta = 2.9000 \text{ kib} - \text{ Models for Steel}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | $ \begin{array}{l} Check No. 8: Design Capacity of the Beam In Tension Calculate the tonsile rupture capacity of the flange plate. $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 3: Design Capacity of the Beam in Tension<br>Calculate the transfer rupture capacity of the flange plate.<br>$\phi = 0.75 \cdot \text{Tensile Rupture Resistance Factor}$<br>$P_{ab} = 0.6 \text{ ks}$ . Beam Tensile Stress<br>$A_{ab} = 57.1 \text{ in}^2$ . Beam Area<br>$ty_b = 1.34 \text{ in} \cdot \text{Beam Flange Thickness}$<br>$d_{ab} = 51.1 \text{ in}^2$ . Beam Area<br>$ty_b = 1.34 \text{ in} \cdot \text{Beam Flange Thickness}$<br>$d_{ab} = 51.1 \text{ in}^2$ . Beam Area<br>$ty_b = 1.34 \text{ in} \cdot \text{Beam Flange Thickness}$<br>$d_{ab} = 51.1 \text{ in}^2$ . Beam Area<br>$ty_b = 1.34 \text{ in} \cdot \text{Beam Flange Thickness}$<br>$d_{ab} = 51.1 \text{ in}^2$ . Beam Area<br>$ty_b = 1.36 \text{ in}^2$ . Beam Area<br>$t_b = 4 \cdot \text{Rumber of Bolt Columns}$<br>$s_c = 3 \text{ in} \text{ Bolt Columns Spacing}$<br>$f_{ab} = 0.1 \text{ certroid of WT section}$<br>$U = 1 - \frac{\bar{y}}{(n_c - 1) s_c}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{(1(2) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{a,br} \cdot \text{Design Tension Rupture Capacity of Section}$<br>$\phi R_{a,br} - \Phi F_{ab} U \left[ 0.5 \text{ A}_{bm} - n_r \left( d_b + 0.0625 \text{ in} \right) t_{jb} \right]$<br>$\phi R_{a,br} = (0.75) \times (65 \text{ ks}) \times (0.9067) \times \left[ 0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0625 \text{ in})) \times (1.34 \text{ in}) \right]$<br>$\rho CR = \frac{n_{ab}}{\sigma A_{a,br}} = \frac{(20.23 \text{ tr})}{(20.04 \text{ tr})} = 0.35612$<br>Demand over Capacity Rulo<br>$DCR = \frac{n_{ab}}{\sigma A_{a,br}} = \frac{(20.23 \text{ tr})}{(20.041 \text{ tp})} = 0.35612$<br><b>Check No. 8: Design Capacity of the Flange Plate in Compression</b><br>Calculate the compression buckting capacity of the flange plate.<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot \text{Compression Buckting Capacity of the flange plate.}$<br>$\phi = 0.9 \cdot Compression Buckting Capacity of the fla$ | PASS |
| AISC 360-16 Chapter D3<br>(Table D3.1 case 2)                                           | Check No. 3: Design Capacity of the Beam in Tension<br>Calculate the tonsile rupture capacity of the fings plate.<br>$\phi = 0.73$ - Tensile Rupture Resistance Factor<br>$F_{ab} = 65$ ks. I - Beam Tensile Stress<br>$A_{ab} = 57.11$ k <sup>-1</sup> - Tensile Rupture Resistance Factor<br>$F_{ab} = -56$ ks. I - Beam Tensile Stress<br>$A_{ab} = 57.11$ k <sup>-1</sup> - Tensile Rupture Resistance Factor<br>$F_{ab} = 4.8$ tumber of Bolt Rows<br>$R_{ab} = 4.8$ tumber of Bolt Rows<br>$R_{ab} = 4.8$ tumber of Bolt Columns<br>$R_{ab} = 4.8$ tumber of Bolt Rows<br>$R_{ab} = 4.8$ tumber of Bolt Rows<br>$R_{ab} = 4.8$ tumber of Bolt Rows<br>$R_{ab} = 4.8$ tumber of Bolt Rows<br>$U = 1 - \frac{\bar{y}}{(R_{ab} - 1)} \frac{\bar{y}}{s_{ab}}$<br>$U = 1 - \frac{(3.0789 \text{ in})}{((12) - 1) \times (3 \text{ in})}$<br>U = 0.9067<br>$\phi R_{ab} = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0025 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{ab} = (0.75) \times (65 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0025 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{ab} = (0.75) \times (0.5 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0025 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{ab} = (0.75) \times (0.5 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0025 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{ab} = (0.75) \times (0.5 \text{ ksi}) \times (0.9067) \times [0.5 \times (57.1 \text{ in}^2) - (4) \times ((1.125 \text{ in}) + (0.0025 \text{ in})) \times (1.34 \text{ in})]$<br>$\phi R_{ab} = 0.90 \text{ transmit} R_{ab} = Rage Plate in Compression Calculate the compression buckling capacity of the Flange Plate in Compression Calculate the compression buckling capacity of the flange plate. $                                                                      | PASS |





|                          | $rac{KL}{r}=27.713$ - Effective Length Slenderness Ratio                                                                     |      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|
| AISC 360-16 Chapter E3   | Since, $\frac{KL}{r} > 25$ .                                                                                                  |      |
| Eq. (E3-4)               | $F_e$ - Elastic Buckling Stress                                                                                               |      |
|                          | $F_e = rac{\pi^2 \ E}{\left(rac{KL}{r} ight)^2}$                                                                            |      |
|                          | $F_e = rac{\pi^2 	imes (29000 	ext{ ksi})}{\left((27.713) ight)^2}$                                                          |      |
|                          | $F = 372.68 \ \mathrm{ksi}$                                                                                                   |      |
|                          | $T_e = 572.00$ KSI                                                                                                            |      |
|                          | 4.71 $\sqrt{\frac{F_y}{F_y}} = 113.43$ - Effective Length Sienderness Ratio Limiter                                           |      |
| AISC 360-16 Chapter E3   | Since, $rac{AB}{r} \leq 4.71 \sqrt{rac{B}{F_y}}$ .                                                                          |      |
| Eq. (E3-2)               | F <sub>cr</sub> - Critical Buckling Stress                                                                                    |      |
|                          | $F_{cr}=\left(0.658rac{F_{yp}}{F_e} ight)F_{yp}$                                                                             |      |
|                          | $F_{cr} = \left( 0.658^{rac{(50 \; \mathrm{ksi})}{(372.68 \; \mathrm{ksi})}}  ight) 	imes (50 \; \mathrm{ksi})$              |      |
|                          | $F_{cr}=47.27~{ m ksi}$                                                                                                       |      |
| AISC 360-16 Chapter E3   | $\phi R_n$ - Design Compressive Capacity of Section                                                                           |      |
| Eq. (E3-1)               | $\phi R_n = \phi \; F_{cr} \; t_{fp}  b_{fp}$                                                                                 |      |
|                          |                                                                                                                               |      |
|                          | $\phi R_n = (0.9) \times (47.27 \text{ ksi}) \times (1.5 \text{ in}) \times (16 \text{ in})$                                  |      |
|                          | $\phi R_n = 1021 \; { m kip}$                                                                                                 |      |
|                          | Result:<br>Demand over Capacity Ratio                                                                                         | PASS |
|                          | $DCR = rac{P_{uF}}{\phi R_n} = rac{(349.22 	ext{ kip})}{(1021 	ext{ kip})} = 0.34202$                                       |      |
|                          | Check No. 10: Connection Detailing Limitations Check at Support Side                                                          |      |
|                          | Detailing LimitationsLimit Value (in)Actual Value (in)DCRResultMaximum Fillet Weld Size per Beam Clearance8.0000.5000.063PASS |      |
|                          | Result:                                                                                                                       | PASS |
|                          | Demand over Capacity Ratio $DCR = \frac{d}{2} = \frac{(0.5)}{0.0625}$                                                         |      |
|                          | Check No. 11: Design Capacity of Weld to Support Flange                                                                       |      |
|                          | Calculate the maximum fillet weld size in 16th of an inch for base metal check.                                               |      |
|                          | $t_{fp} = 1.5~{ m m}$ - Flange Plate Thickness $F_{up} = 65~{ m ksi}$ - Flange Plate Tensile Stress                           |      |
|                          | $t_{fs}=0.71~{ m in}$ - Column Flange Thickness                                                                               |      |
| AISC 15th Ed. Part 9 Eq. | $F_{us} = 05$ KSI - Column lensile Stress<br>$D_{max}$ - Maximum Fillet Weld Size for Base Metal Strength                     |      |
| (3-2)                    | $t_{fp}$ , $r_{f} < t_{f}$ , $r_{f} < t_{f}$                                                                                  |      |
|                          | $D_{max} = rac{rac{1}{2} F_{up} \leq t_{fs} F_{us}}{3.09 	ext{ kip/in}}$                                                    |      |
|                          | $D_{max} = rac{(0.75 	ext{ in}) 	imes (65 	ext{ ksi}) \leq (0.71 	ext{ in}) 	imes (65 	ext{ ksi})}{(3.09 	ext{ kip/in})}$    |      |
|                          | $D_{max}=14.935$                                                                                                              |      |
|                          | Calculate the total effective weld length.                                                                                    |      |
|                          | $L_w$ - Length of One Weld Segment                                                                                            |      |
|                          | $L_w=rac{(b_{fs}-2k_{1\_sup})}{2}$                                                                                           |      |
|                          | $L_w = \frac{((14.5~{\rm in}) - 2 \times (1.4375~{\rm in}))}{2}$                                                              |      |
|                          | $L_w=5.8125~{ m in}$                                                                                                          |      |
|                          | $L_w$ - Total Effective Length of Weld                                                                                        |      |
|                          | $L_w = 4  \left[ L_w - 2  \left( W \le 0.3125   { m in}  ight)  ight]$                                                        |      |
|                          | $L_w = 4 	imes [(5.8125 	ext{ in}) - 2 	imes ((0.5 	ext{ in}) \le (0.3125 	ext{ in}))]$                                       |      |
|                          | $L_w=20.75~{ m in}$                                                                                                           |      |
|                          | Calculate the design capacity of weld                                                                                         |      |
|                          | $F_{EXX}=70~{ m ksi}$ - Filler Metal Classification Strength $W=0.5~{ m in}$ - Fillet Weld Size                               |      |



| AISC 15th Ed. Part 9 Eq.<br>(9-2)      | $D_{max} = 14.935$ - Maximum Fillet Weld Size for Base Metal Strength                                                                                             |      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (3.2)                                  | $L_w=20.75~{ m in}$ - Total Effective Length of Weld                                                                                                              |      |
|                                        | $\phi=0.75$ - Fillet Weld Resistance Factor                                                                                                                       |      |
| AISC 360-16 Chapter J2.4<br>Eq. (J2-4) | $\phi R_n$ - Design Strength of Welds                                                                                                                             |      |
|                                        | $\sqrt{2} \left( \sum_{max} D_{max} \right)$                                                                                                                      |      |
|                                        | $\phi R_n = \phi \ 0.6 \ F_{EXX} \ rac{1}{2} \left( W \leq rac{-max}{16}  ight) \ L_w$                                                                          |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $\phi R_n = (0.75) 	imes 0.6 	imes (70 	ext{ ksi}) 	imes rac{\sqrt{2}}{2} 	imes \left( (0.5 	ext{ in}) \leq rac{(14.935)}{(10)}  ight) 	imes (20.75 	ext{ in})$ |      |
|                                        | 2  (16)  /                                                                                                                                                        |      |
|                                        | $\phi R_n = 231.09 { m ~kip}$                                                                                                                                     |      |
|                                        | Result:                                                                                                                                                           | PASS |
|                                        | Demand over Capacity Ratio                                                                                                                                        | 1455 |
|                                        | $DCR = rac{P_f}{\phi R_r} = rac{(231.09 	ext{ kip})}{(231.09 	ext{ kip})} = 1$                                                                                  |      |
|                                        | Check No. 12: Design Capacity of Weld to Support Web                                                                                                              |      |
|                                        | Calculate the maximum fillet weld size in 16th of an inch for base metal check.                                                                                   |      |
|                                        | $t_{fp}=1.5~{ m in}$ - Flange Plate Thickness                                                                                                                     |      |
|                                        | $F_{up}=65~{ m ksi}$ - Flange Plate Tensile Stress                                                                                                                |      |
|                                        | $t_{ws} = 0.44 	ext{ in - Column Web Thickness}$                                                                                                                  |      |
| AISC 15th Ed. Part 9 Eq.               | $P_{us} = 03$ ksi - Column lensile Stress<br>$D_{us}$ Maximum Fillet Weld Size for Pase Metal Strength                                                            |      |
| (9-2)                                  | D <sub>max</sub> - Maximum milet weld Size for base Metal Strength                                                                                                |      |
|                                        | $rac{t_{fp}}{2}\;F_{up}\leq t_{ws}\;F_{us}$                                                                                                                      |      |
|                                        | $D_{max} = rac{-2}{3.09 	ext{ kip/in}}$                                                                                                                          |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $D_{max} = rac{(0.75 	ext{ in}) 	imes (65 	ext{ ksi}) \leq (0.44 	ext{ in}) 	imes (65 	ext{ ksi})}{(2.00 	ext{ ksi} + (1.0) 	ext{ ksi})}$                        |      |
|                                        | (3.09  kip/in)                                                                                                                                                    |      |
|                                        | $D_{max}=9.2557$                                                                                                                                                  |      |
|                                        |                                                                                                                                                                   |      |
|                                        | Calculate the total effective weld length.<br>$L_w$ - Total Effective Length of Weld                                                                              |      |
|                                        | U = 2 [T = 2 (W < 0.2125 ; m)]                                                                                                                                    |      |
|                                        | $L_w = 2 \left[ I_{sup} - 2 \left( W \ge 0.3123 \text{ III} \right) \right]$                                                                                      |      |
|                                        | $L_w = 2 	imes [(10 	ext{ in}) - 2 	imes ((0.5 	ext{ in}) \le (0.3125 	ext{ in}))]$                                                                               |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $L_w=18.75~{ m in}$                                                                                                                                               |      |
|                                        | Calculate the design capacity of weld.                                                                                                                            |      |
|                                        | $P_f = 118.12 ~{ m kip}$ - Excess Flange force to be carried by the web welds                                                                                     |      |
|                                        | $F_{EXX} = 70 \text{ ksi}$ - Filler Metal Classification Strength                                                                                                 |      |
| AISC 15th Ed. Part 9 Eg.               | $W = 0.5 	ext{ in - Fillet Weld Size}$                                                                                                                            |      |
| (9-2)                                  | $D_{max} = 9.2557$ - Maximum Fillet weld Size for Base Metal Strength<br>$L_{max} = 18.75$ in Total Effective Length of Wold                                      |      |
|                                        | $\phi = 0.75$ - Fillet Weld Resistance Factor                                                                                                                     |      |
| AISC 360-16 Chapter J2.4<br>Fa (12-4)  | $\phi R_n$ - Design Strength of Welds                                                                                                                             |      |
| 29.02 4                                |                                                                                                                                                                   |      |
|                                        | $\phi R_n = \phi \ 0.6 \ F_{EXX} \ rac{\sqrt{2}}{2} \left( W \leq rac{D_{max}}{16}  ight) \ L_w$                                                                |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $\phi P = (0.75) \times 0.6 \times (70 \text{ kgi}) \times \sqrt{2} \times ((0.5 \text{ in}) < (9.2557)) \times (18.75 \text{ in})$                               |      |
|                                        | $\varphi R_n = (0.75) \times 0.0 \times (70 \text{ ksr}) \times \frac{1}{2} \times ((0.5 \text{ m}) \le \frac{1}{(16)}) \times (18.75 \text{ m})$                 |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $\phi R_n = 208.82~{ m kip}$                                                                                                                                      |      |
|                                        | Result:<br>Demand over Capacity Batio                                                                                                                             | PASS |
|                                        | $DCR = \frac{P_f}{P_f} = \frac{(118.12 \text{ kip})}{0.56568} = 0.56568$                                                                                          |      |
|                                        | $DOR = \frac{1}{\phi R_n} = \frac{1}{(208.82 \text{ kip})} = 0.50500$                                                                                             |      |
|                                        | Check No. 13: Design Capacity of Support Web in Punching                                                                                                          |      |
|                                        | Calculate the web capacity in punching of the supporting member.<br>$P_f = 118.12 \text{ kip}$ - Excess Flange force to be carried by the web welds               |      |
|                                        | $\phi=0.95$ - Web Punching Safety Factor                                                                                                                          |      |
|                                        | $F_{ys}=50~{ m ksi}$ - Column Yield Stress                                                                                                                        |      |
|                                        | $t_{ws}=0.44~{ m in}$ - Column Web Thickness                                                                                                                      |      |
|                                        | $r_{sup} = 10 \text{ m}$ - Column 1-Dimension<br>$\phi R_n$ - Design Web Shear Yielding (Punching)                                                                |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $\phi \kappa_n = \phi \ 0.0 \ F_{ys} \ t_{ws} \ 2 \ T_{sup}$                                                                                                      |      |
|                                        | $\phi R_n = (0.95) 	imes 0.6 	imes (50 	ext{ ksi}) 	imes (0.44 	ext{ in}) 	imes 2 	imes (10 	ext{ in})$                                                           |      |
|                                        |                                                                                                                                                                   |      |
|                                        | $\phi R_n = 250.8 ~{ m kip}$                                                                                                                                      |      |
|                                        | Result:                                                                                                                                                           | PASS |
|                                        | Demand over Capacity Ratio                                                                                                                                        |      |
|                                        | $DCR = rac{1}{\phi R_n} = rac{(10012 	ext{ MP})}{(250.8 	ext{ kip})} = 0.47099$                                                                                 |      |



| REFERENCES | CALCULATIONS                                                                         | RESULTS |
|------------|--------------------------------------------------------------------------------------|---------|
|            | Summary of Checks                                                                    |         |
|            | Design Checks Demand Capacity DCR Result                                             |         |
|            | Connection Detailing Limitations Check at Beam Side 1.250 1.250 1.000 PASS           |         |
|            | Design Capacity of the Bolts in Shear 349.215 1254.029 0.278 PASS                    |         |
|            | Design Bolt Bearing Capacity of the Flange Plate 349.215 7239.375 0.048 <b>PASS</b>  |         |
|            | Design Bolt Bearing Capacity of the Beam Flange 349.215 6917.918 0.050 PASS          |         |
|            | Design Block Shear Capacity of the Flange Plate 349.215 1542.938 0.226 PASS          |         |
|            | Design Block Shear Capacity of the Beam Flange 349.215 2150.826 0.162 PASS           |         |
|            | Design Capacity of the Flange Plate in Tension 349.215 786.094 0.444 <b>PASS</b>     |         |
|            | Design Capacity of the Beam in Tension 349.215 980.612 0.356 <b>PASS</b>             |         |
|            | Design Capacity of the Flange Plate in Compression 349.215 1021.025 0.342 PASS       |         |
|            | Connection Detailing Limitations Check at Support Side 0.500 8.000 0.063 <b>PASS</b> |         |
|            | Design Capacity of Weld to Support Flange 231.091 231.091 1.000 PASS                 |         |
|            | Design Capacity of Weld to Support Web 118.124 208.817 0.566 PASS                    |         |
|            | Design Capacity of Support Web in Punching 118.124 250.800 0.471 PASS                |         |
|            |                                                                                      |         |



| REFERENCES          |                                                                                                        | CALCULATIONS                                        |                                               |          |        |   | RESULTS |
|---------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------|--------|---|---------|
|                     | Shear Plate Con                                                                                        | nection   A                                         | ISC 360-16 LI                                 | RFD      |        |   |         |
|                     | Single Plate Geometry:                                                                                 | ·                                                   |                                               |          |        |   |         |
|                     | $b_p=21~{ m in}$ - Single Plate Width                                                                  |                                                     |                                               |          |        |   |         |
|                     | $d_p=21~{ m in}$ - Single Plate Depth                                                                  |                                                     |                                               |          |        |   |         |
|                     | $t_p=1~{ m in}$ - Single Plate Thickness                                                               |                                                     |                                               |          |        |   |         |
|                     | Single Plate Material Grade:<br>$F_{em} = 50 \text{ ksi}$ - Single Plate Yield Stress                  |                                                     |                                               |          |        |   |         |
|                     | $F_{up}=65~{ m ksi}$ - Single Plate Tensile Stress                                                     |                                                     |                                               |          |        |   |         |
|                     | Connection Geometry:                                                                                   |                                                     |                                               |          |        |   |         |
|                     | $n_r=7$ - Number of Bolt Rows                                                                          |                                                     |                                               |          |        |   |         |
|                     | $s_r = 3$ in - Bolt Row Spacing $n_r = 4$ - Number of Bolt Columns                                     |                                                     |                                               |          |        |   |         |
|                     | $s_c = 3 	ext{ in - Bolt Column Spacing}$                                                              |                                                     |                                               |          |        |   |         |
|                     | Distances:                                                                                             |                                                     |                                               |          |        |   |         |
|                     | $clr=8~{ m in}$ - Beam Web Clearance                                                                   |                                                     |                                               |          |        |   |         |
|                     | $L_{eh\_bm} = 2$ in - Horizontal Edge Distance on Beam Web                                             |                                                     |                                               |          |        |   |         |
|                     | $L_{ev\_pl} = 2.5 	ext{ in}$ - Vertical Edge Distance on Single Plate                                  |                                                     |                                               |          |        |   |         |
|                     | $e=14.5~{ m in}$ - Bolt Group Eccentricity                                                             |                                                     |                                               |          |        |   |         |
|                     | Check No. 1: Connection Detailing Limitations at Beam Side                                             | 1                                                   |                                               |          |        |   |         |
|                     |                                                                                                        |                                                     |                                               |          |        | - |         |
|                     | Detailing Limitations                                                                                  | Limit Value (in)                                    | Actual Value (in)                             | DCR      | Result |   |         |
|                     | Minimum Bolt Row Spacing                                                                               | 2.667                                               | 3.000                                         | 0.889    | PASS   | - |         |
|                     | Minimum Bolt Column Spacing                                                                            | 6.000                                               | 3.000                                         | 0.500    | PASS   | 4 |         |
|                     | Maximum Bolt Column Spacing                                                                            | 6.000                                               | 3.000                                         | 0.500    | PASS   | 1 |         |
|                     | Plate Minimum Vertical Edge Distance                                                                   | 1.250                                               | 1.500                                         | 0.833    | PASS   | 1 |         |
|                     | Plate Minimum Horizontal Edge Distance                                                                 | 1.375                                               | 2.000                                         | 0.688    | PASS   | 1 |         |
|                     | Beam Minimum Horizontal Edge Distance                                                                  | 1.250                                               | 2.000                                         | 0.625    | PASS   | ] |         |
|                     | Minimum Connection Depth                                                                               | 11.500                                              | 21.000                                        | 0.548    | PASS   | - |         |
|                     | Maximum Connection Depth                                                                               | 23.625                                              | 21.000                                        | 0.889    | PASS   | ] |         |
|                     | Result:                                                                                                |                                                     |                                               |          |        |   | PASS    |
|                     | Demand over Capacity Ratio                                                                             |                                                     |                                               |          |        |   |         |
|                     | $DCR = \frac{1}{c} = \frac{1}{(3)} = 0.889$                                                            |                                                     |                                               |          |        |   |         |
|                     | Check No. 2: Design Capacity of the Bolt Group in Shear                                                |                                                     |                                               |          |        |   |         |
|                     | Calculate the design shear capacity of the bolt group.<br>$\phi = 0.75$ - Bolt Shear Resistance Factor |                                                     |                                               |          |        |   |         |
|                     | $\phi^{-}$ . Bolt Diameter                                                                             |                                                     |                                               |          |        |   |         |
|                     | C=28 - Calculated Bolt Group Coefficient                                                               |                                                     |                                               |          |        |   |         |
|                     | $F_{nv}=68~{ m ksi}$ - Bolt Nominal Shear Strength                                                     |                                                     |                                               |          |        |   |         |
| AISC 360-16 Chapter | $N_s = 1$ - Number of Shear Planes                                                                     |                                                     |                                               |          |        |   |         |
| J5.2(a)             | Ny Thiel Tactor for Dearing Doits                                                                      |                                                     |                                               |          |        |   |         |
|                     | $h_f=0.85$                                                                                             | 5 < 1 - 0.4  (t - 0.5)                              | $25 	ext{ in}) \leq 1$                        |          |        |   |         |
|                     | $b_{1} = 0.85 < 1$                                                                                     | $(0,4) \times ((0,in))$                             | (0.25 in)) < 1                                |          |        |   |         |
|                     | $n_f = 0.85 < 1$                                                                                       | $-(0.4) \times ((0 \text{ m}) -$                    | $(0.25 \text{ III})) \leq 1$                  |          |        |   |         |
|                     |                                                                                                        | $h_f=1$                                             |                                               |          |        |   |         |
| AISC 360-16 Chapter | A Design Balt Cheer Canacity                                                                           |                                                     |                                               |          |        |   |         |
| J3.6 Eq. (J́3-1)    | $\phi \kappa_n$ - Design Bolt Shear Capacity                                                           |                                                     |                                               |          |        |   |         |
|                     | $\phi R_n$ =                                                                                           | $=\phiF_{nv}\;rac{\pi}{4}\left(d_b ight)^2N$       | $f_s \ C \ h_f$                               |          |        |   |         |
|                     |                                                                                                        | Ŧ                                                   |                                               |          |        |   |         |
|                     | $\phi R_n = (0.75) 	imes (68$                                                                          | ksi) $\times \frac{\pi}{4} \times ((1 \text{ in}))$ | $\left(1 ight)^2	imes (1)	imes (28)	imes (1)$ | )        |        |   |         |
|                     |                                                                                                        | 4                                                   |                                               |          |        |   |         |
|                     |                                                                                                        | $\phi R_n = 1121.5 \; { m kip}$                     | •                                             |          |        |   |         |
|                     | Result:                                                                                                |                                                     |                                               |          |        |   | PASS    |
|                     | Demand over Capacity Ratio                                                                             |                                                     |                                               |          |        |   |         |
|                     | $DCR = rac{v_u}{\phi R_n} = rac{(400 	ext{ kip})}{(1121.5 	ext{ kip})} = 0.35665$                    |                                                     |                                               |          |        |   |         |
|                     | Check No. 3: Design Capacity of the Bolt Group in Bearing a                                            | nd Tear-out on Si                                   | ngle Plate                                    |          |        |   |         |
|                     | Calculate the bolt bearing capacity of the single plate.                                               |                                                     |                                               |          |        |   |         |
|                     | $d_b = 1$ in - Bolt Diameter<br>$t_n = 1$ in - Single Plate Thickness                                  |                                                     |                                               |          |        |   |         |
|                     | $F_{up}=65~{ m ksi}$ - Single Plate Tensile Stress                                                     |                                                     |                                               |          |        |   |         |
|                     | C=28 - Calculated Bolt Group Coefficient                                                               |                                                     |                                               |          |        |   |         |
| AISC 260 16 Chapter | $\phi=0.75$ - Bolt Bearing Resistance Factor                                                           |                                                     |                                               |          |        |   |         |
| J3.10 Eq. (J3-6a)   | $\phi R_{n\_bearing}$ - Design Bolt Bearing Capacity of Section                                        |                                                     |                                               |          |        |   |         |
|                     | $\phi R_{n\_l}$                                                                                        | $_{bearing}=\phi~2.4d_bt_p$                         | $F_{up}  C$                                   |          |        |   |         |
|                     |                                                                                                        |                                                     |                                               | <b>`</b> |        |   |         |
|                     | $\phi R_{n\_bearing} = (0.75)$ :                                                                       | imes 2.4 $	imes$ (1 in) $	imes$ (1                  | (1  in) 	imes (65  ksi) 	imes (28)            | 5)       |        |   |         |
|                     | φ                                                                                                      | $R_{n\ bearing}=3276$ l                             | cip                                           |          |        |   |         |
|                     | $\varphi$                                                                                              | ocarring 0=101                                      | -                                             |          |        |   |         |
|                     | Calculate the clear distance of outer bolts on single plate.                                           |                                                     |                                               |          |        |   |         |





 $L_{ev\_pl} = 1.5 ~{
m in}$  - Vertical Edge Distance on Single Plate

 $d_h = 1.125 ~{
m in}$  - Vertical Bolt Hole Dimension at Plate

 $l_{c1}$  - Clear Distance at First Bolt Row

$$l_{c1} = L_{ev\_pl} - rac{d_h}{2}$$

$$l_{c1} = (1.5 ext{ in}) - rac{(1.125 ext{ in})}{2}$$

$$l_{c1} = 0.9375$$
 in

## Calculate the clear distance of inner bolts on single plate.

 $s_r=3~{
m in}$  - Bolt Row Spacing

 $d_h = 1.125~{
m in}$  - Vertical Bolt Hole Dimension at Plate

 $l_{c2}\,$  - Clear Distance at Rest of Bolts

 $l_{c2} = s_r - d_h$ 

$$l_{c2} = (3 ext{ in}) - (1.125 ext{ in})$$

$$l_{c2} = 1.875$$
 in

Calculate the bolt tear-out capacity of the single plate.

 $l_{c1}=0.9375~{
m in}$  - Clear Distance at First Bolt Row

 $l_{c2}=1.875~{
m in}$  - Clear Distance at Rest of Bolts

 $t_p=1~{
m in}$  - Single Plate Thickness

 $F_{up}=65~{
m ksi}$  - Single Plate Tensile Stress

C=28 - Calculated Bolt Group Coefficient

 $n_r=7$  - Number of Bolt Rows

 $\phi=0.75$  - Bolt Bearing Resistance Factor

AISC 360-16 Chapter J3.10 Eq. (J3-6c)

 $\phi R_{n\_tearout}$  - Design Bolt Tear-out Capacity of Section

$$\phi R_{n\_tearout} = \phi \, \left[ 1.2 \, l_{c1} \, t_p \, F_{up} + 1.2 \, l_{c2} \, t_p \, F_{up} \, (n_r - 1) 
ight] \, \left( rac{C}{n_r} 
ight)$$

$$\phi R_{n\_tearout} = (0.75) imes [1.2 imes (0.9375 ext{ in}) imes (1 ext{ in}) imes (65 ext{ ksi}) + 1.2 imes (1.875 ext{ in}) imes (1 ext{ in}) imes (65 ext{ ksi}) imes ((7) - 1)] imes \left(rac{(28)}{(7)}
ight)$$

 $\phi R_{n\_tearout} = 2851.9 ~{
m kip}$ 

Determine the governing bearing and tear-out capacity of the bolt group on single plate.

AISC 360-16 Chapter  $\phi R_{n, hearing} = 3276 ext{ kip}$  - Design bolt bearing capacity of single plate

| JS.10 Eq. (JS-0a)                        |                                                                                                                      |      |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|
| AISC 360-16 Chapter<br>J3.10 Eq. (J3-6c) | $\phi R_{n\_tearout} = 2851.9~{ m kip}$ - Design bolt tear-out capacity of single plate                              |      |
| AISC 360-16 Chapter<br>J3.10             | $\phi R_n$ - Governing Design Capacity                                                                               |      |
|                                          | $\phi R_n = min\left(\phi R_{n\_bearing}, \phi R_{n\_tearout} ight)$                                                 |      |
|                                          | $\phi R_n = min\left(\left(3276 \text{ kip}\right), \left(2851.9 \text{ kip}\right)\right)$                          |      |
|                                          | $\phi R_n = 2851.9~{ m kip}$                                                                                         |      |
|                                          | Result:                                                                                                              | PASS |
|                                          | $DCR = \frac{V_u}{V_u} = \frac{(400 \text{ kip})}{-0.14026} = 0.14026$                                               |      |
|                                          | $DCR = \frac{1}{\phi R_n} = \frac{1}{(2851.9 \text{ kip})} = 0.14020$                                                |      |
|                                          | Check No. 4: Design Capacity of the Bolt Group in Bearing and Tear-out on Beam Web                                   |      |
|                                          | Calculate the bolt bearing capacity of the beam web.                                                                 |      |
|                                          | $d_b=1~{ m in}$ - Bolt Diameter                                                                                      |      |
|                                          | $t_{wb}=0.75~{ m in}$ - Beam Web Thickness                                                                           |      |
|                                          | $F_{ub} = 65$ ksi - Beam Tensile Stress                                                                              |      |
|                                          | C = 28 - Calculated Bolt Group Coefficient                                                                           |      |
| NISC 360-16 Chapter                      | $\phi = 0.75$ - Bolt Bearing Resistance Factor                                                                       |      |
| J3.10 Eq. (J3-6a)                        | $\phi R_{n\_bearing}$ - Design Bolt Bearing Capacity of Section                                                      |      |
|                                          | $\phi R_{n\_bearing} = \phi \ 2.4 \ d_b \ t_{wb} \ F_{ub} \ C$                                                       |      |
|                                          | $\phi R_{n\_bearing} = (0.75) 	imes 2.4 	imes (1 	ext{ in}) 	imes (0.75 	ext{ in}) 	imes (65 	ext{ ksi}) 	imes (28)$ |      |
|                                          | $\phi R_{n\_bearing} = 2457 \; { m kip}$                                                                             |      |
|                                          | Calculate the clear distance of inner bolts on beam web.                                                             |      |
|                                          | $s_r=3~{ m in}$ - Bolt Row Spacing                                                                                   |      |
|                                          | $d_h = 1.125 ~{ m in}$ - Vertical Bolt Hole Dimension at Beam                                                        |      |
|                                          | $l_{c2}$ - Clear Distance at Rest of Bolts                                                                           |      |
|                                          | $l_{c2}=s_r-d_h$                                                                                                     |      |
|                                          | $l_{c2} = (3 \text{ in}) - (1.125 \text{ in})$                                                                       |      |
|                                          | $l_{c2}=1.875~{\rm in}$                                                                                              |      |
|                                          | Calculate the bolt tear-out capacity of the beam web.                                                                |      |
|                                          | $l_{c2}=1.875~{ m in}$ - Clear Distance at Rest of Bolts                                                             |      |
|                                          | $t_{wb}=0.75~{ m in}$ - Beam Web Thickness                                                                           |      |
|                                          | $F_{ub}=65~{ m ksi}$ - Beam Tensile Stress                                                                           |      |
|                                          |                                                                                                                      |      |



| AISC 360-16 Chapter                      | C=28 - Calculated Bolt Group Coefficient<br>$\phi=0.75$ - Bolt Bearing Resistance Factor<br>$\phi B_{rr}$ togget - Design Bolt Tear-out Capacity of Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| J3.10 Eq. (J3-6C)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|                                          | $\phi R_{n\_tearout} = \phi \ 1.2 \ l_{c2} \ t_{wb} \ F_{ub} \ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                                          | $\phi R_{n\_tearout} = (0.75) 	imes 1.2 	imes (1.875 	ext{ in}) 	imes (0.75 	ext{ in}) 	imes (65 	ext{ ksi}) 	imes (28)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                          | $\phi R_{n\_tearout} = 2303.4 ~{ m kip}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                          | Determine the governing bearing and tear-out capacity of the bolt group on beam web.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| AISC 360-16 Chapter<br>J3.10 Eq. (J3-6a) | $\phi R_{n\_bearing} = 2457~{ m kip}$ - Design bolt bearing capacity of beam web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| AISC 360-16 Chapter<br>J3.10 Eq. (J3-6c) | $\phi R_{n\_tearout} = 2303.4~{ m kip}$ - Design bolt tear-out capacity of beam web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| AISC 360-16 Chapter<br>J3.10             | $\phi R_n$ - Governing Design Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                          | $\phi R_n = min\left(\phi R_{n\_bearing}, \phi R_{n\_tearout} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                          | $\phi R_n = min\left(\left(2457~\mathrm{kip}\right), \left(2303.4~\mathrm{kip}\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                                          | $\phi R_n = 2303.4~{ m kip}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                                          | Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PASS |
|                                          | Demand over Capacity Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                                          | $DCR = rac{v_u}{\phi R_n} = rac{(400 	ext{ Mp})}{(2303.4 	ext{ kip})} = 0.17365$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                          | Check No. 5: Design Capacity of Single Plate in Block Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                          | Calculate the net area of the single plate subject to tension.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|                                          | $v_p = 1 \text{ III}$ - Single Plate Thickness $n_p = A$ . Number of Bolt Columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                                          | $n_c = 4$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                          | $n_c = 4$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$L_{eh\_pl} = 2$ in - Horizontal Edge Distance on Single Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                                          | $n_c = 4$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$L_{eh\_pl} = 2$ in - Horizontal Edge Distance on Single Plate<br>$d_h = 1.3125$ in - Horizontal Bolt Hole Dimension at Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                                          | $r_p = 1 \text{ m}$ - Single Plate Trickness<br>$n_c = 4$ - Number of Bolt Columns<br>$s_c = 3 \text{ in}$ - Bolt Column Spacing<br>$L_{eh\_pl} = 2 \text{ in}$ - Horizontal Edge Distance on Single Plate<br>$d_h = 1.3125 \text{ in}$ - Horizontal Bolt Hole Dimension at Plate<br>$A_{nt}$ - Net Area Subject to Tension (L-pattern)                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|                                          | $t_p = 1$ m - Single Plate Mitchless<br>$n_c = 4$ - Number of Bolt Columns<br>$s_c = 3$ in - Bolt Column Spacing<br>$L_{ch\_pl} = 2$ in - Horizontal Edge Distance on Single Plate<br>$d_h = 1.3125$ in - Horizontal Bolt Hole Dimension at Plate<br>$A_{nt}$ - Net Area Subject to Tension (L-pattern)<br>$A_{nt} = t_p [(n_c - 1) \ s_c + L_{eh\_pl} - (n_c - 0.5) \ (d_h + 0.0625 \ in)]$                                                                                                                                                                                                                                                                                                                                                                      |      |
|                                          | $\begin{aligned} n_c &= 4 \text{ Number of Bolt Columns} \\ s_c &= 3 \text{ in - Bolt Column Spacing} \\ L_{eh\_pl} &= 2 \text{ in - Horizontal Edge Distance on Single Plate} \\ d_h &= 1.3125 \text{ in - Horizontal Bolt Hole Dimension at Plate} \\ A_{nt} &= \text{Net Area Subject to Tension (L-pattern)} \end{aligned}$ $\begin{aligned} A_{nt} &= t_p \left[ (n_c - 1) \ s_c + L_{eh\_pl} - (n_c - 0.5) \ (d_h + 0.0625 \text{ in}) \right] \\ A_{nt} &= (1 \text{ in}) \times \left[ ((4) - 1) \times (3 \text{ in}) + (2 \text{ in}) - ((4) - 0.5) \times ((1.3125 \text{ in}) + (0.0625 \text{ in})) \right] \end{aligned}$                                                                                                                           |      |
|                                          | $\begin{aligned} & t_p = 1 \text{ in - Single Flate Hitchless} \\ & n_c = 4 \text{ - Number of Bolt Columns} \\ & s_c = 3 \text{ in - Bolt Column Spacing} \\ & L_{eh\_pl} = 2 \text{ in - Horizontal Edge Distance on Single Plate} \\ & d_h = 1.3125 \text{ in - Horizontal Bolt Hole Dimension at Plate} \\ & A_{nt} \text{ - Net Area Subject to Tension (L-pattern)} \end{aligned}$ $\begin{aligned} & A_{nt} = t_p \left[ (n_c - 1) \ s_c + L_{eh\_pl} - (n_c - 0.5) \ (d_h + 0.0625 \text{ in}) \right] \\ & A_{nt} = (1 \text{ in}) \times \left[ ((4) - 1) \times (3 \text{ in}) + (2 \text{ in}) - ((4) - 0.5) \times ((1.3125 \text{ in}) + (0.0625 \text{ in})) \right] \end{aligned}$ $\begin{aligned} & A_{nt} = 6.1875 \text{ in}^2 \end{aligned}$ |      |

 $t_p = 1$  in - Single Plate Thickness  $L_{ev\_pl} = 1.5 ~{
m in}$  - Vertical Edge Distance on Single Plate  $n_r=7$  - Number of Bolt Rows  $s_r=3~{
m in}$  - Bolt Row Spacing  $A_{gv}\,$  - Gross Area Subject to Shear (L-pattern)  $A_{gv} = t_p \, \left[ L_{ev\_pl} + (n_r - 1) \, \, s_r 
ight]$  $A_{qv} = (1 ext{ in}) imes [(1.5 ext{ in}) + ((7) - 1) imes (3 ext{ in})]$  $A_{gv}=19.5~{
m in}^2$ Calculate the net area of the single plate subject to shear.  $t_p=1~{
m in}$  - Single Plate Thickness  $d_p=21~{
m in}$  - Single Plate Depth  $L_{ev\_pl} = 1.5 ~{
m in}$  - Vertical Edge Distance on Single Plate  $n_r=7$  - Number of Bolt Rows  $d_h = 1.125 \; {
m in}$  - Vertical Bolt Hole Dimension at Plate  $A_{nv}\,$  - Net Area Subject to Shear (L-pattern)  $A_{nv} = t_p \, \left[ d_p - L_{ev\_pl} - (n_r - 0.5) \, \left( d_h + 0.0625 \ {
m in} 
ight) 
ight]$  $A_{nv} = (1 ext{ in}) imes [(21 ext{ in}) - (1.5 ext{ in}) - ((7) - 0.5) imes ((1.125 ext{ in}) + (0.0625 ext{ in}))]$  $A_{nv}=11.781~{\rm in}^2$ Calculate the design block shear capacity of the single plate.  $F_{up}=65~{
m ksi}$  - Single Plate Tensile Stress  $A_{nv}=11.781~{
m in}^2$  - Net Area Subject to Shear (L-pattern)  $U_{bs}=0.5$  - Uniformity factor for multiple line of bolts  $A_{nt}=6.1875~{
m in}^2$  - Net Area Subject to Tension (L-pattern)  $F_{yp}=50~{
m ksi}$  - Single Plate Yield Stress  $A_{gv}=19.5~{
m in}^2$  - Gross Area Subject to Shear (L-pattern)  $\phi=0.75$  - Block Shear Resistance Factor AISC 360-16 Chapter J4.3 Eq. (J4-5)  $\phi R_n$  - Design Block Shear Capacity of Section  $\phi R_n = \phi \; (0.6 \; F_{up} \, A_{nv} + U_{bs} \; F_{up} \, A_{nt} \leq 0.6 \; F_{yp} \; A_{gv} + U_{bs} \; F_{up} \; A_{nt})$  $\phi R_n = (0.75) \times \left(0.6 \times (65 \text{ ksi}) \times \left(11.781 \text{ in}^2\right) + (0.5) \times (65 \text{ ksi}) \times \left(6.1875 \text{ in}^2\right) \le 0.6 \times (50 \text{ ksi}) \times \left(19.5 \text{ in}^2\right) + (0.5) \times (65 \text{ ksi}) \times \left(6.1875 \text{ in}^2\right)\right)$ 

**Result:** 



 $\phi R_n = 495.42 ext{ kip}$ 

PASS

|                                                               | Demand over Capacity Ratio<br>$D C B = \frac{V_u}{V_u} = \frac{(400 \text{ kip})}{0.00730} = 0.00730$                               |      |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                               | $DCR = \frac{1}{\phi R_n} = \frac{1}{(495.42 \text{ kip})} = 0.80739$ Check No. 6: Design Capacity of Single Plate in Shear         |      |
|                                                               | Calculate the gross area of single plate subject to yielding.                                                                       |      |
|                                                               | $d_p=21~{ m in}$ - Single Plate Depth $t_n=1~{ m in}$ - Single Plate Thickness                                                      |      |
|                                                               | $A_{gv}$ - Section Gross Area                                                                                                       |      |
|                                                               | $A_{gv}=d_p \ t_p$                                                                                                                  |      |
|                                                               | $A_{gv} = (21 \text{ in}) \times (1 \text{ in})$                                                                                    |      |
|                                                               | $A_{gv}=21~{\rm in}^2$                                                                                                              |      |
|                                                               | Calculate the shear yielding capacity of the single plate.                                                                          |      |
|                                                               | $F_{yp}=50~{ m ksi}$ - Single Plate Yield Stress $A_{av}=21~{ m in}^2$ - Section Gross Area                                         |      |
| AISC 360-16 Chapter<br>J4.2 Eq. (J4-3)                        | $\phi=1$ - Shear Yielding Resistance Factor                                                                                         |      |
|                                                               | $\phi R_{n\_sy}$ - Design Shear Yielding Capacity of Section                                                                        |      |
|                                                               | $\phi R_{n\_sy} = \phi \ 0.6 \ F_{yp} \ A_{gv}$                                                                                     |      |
|                                                               | $\phi R_{n\_sy} = (1) 	imes 0.6 	imes (50 	ext{ ksi}) 	imes (21 	ext{ in}^2)$                                                       |      |
|                                                               | $\phi R_{n\_sy} = 630 \; \rm kip$                                                                                                   |      |
|                                                               | Calculate the net area of single plate subject to rupture. $t_p=1 { m in}$ - Single Plate Thickness                                 |      |
|                                                               | $d_p=21~{ m in}$ - Single Plate Depth                                                                                               |      |
|                                                               | $n_r=7$ - Number of Bolt Rows $d_h=1.125~{ m in}$ - Vertical Bolt Hole Dimension at Plate                                           |      |
|                                                               | $A_{nv}$ - Section Net Area                                                                                                         |      |
|                                                               | $A_{nv} = t_p  \left[ a_p - n_r  \left( a_h + 0.0025  \mathrm{m}  ight)  ight]$                                                     |      |
|                                                               | $A_{nv} = (1 \; \mathrm{in}) \times [(21 \; \mathrm{in}) - (7) \times ((1.125 \; \mathrm{in}) + (0.0625 \; \mathrm{in}))]$          |      |
|                                                               | $A_{nv}=12.688~{\rm in}^2$                                                                                                          |      |
|                                                               | Calculate the shear rupture capacity of the single plate.<br>$F_{up}=65~{ m ksi}$ - Single Plate Tensile Stress                     |      |
|                                                               | $A_{nv}=12.688~{ m in}^2$ - Section Net Area $\phi=1$ - Shear Yielding Resistance Factor                                            |      |
| AISC 360-16 Chapter<br>14.2 Eg. (14-4)                        | $\phi = 1$ - Shear Heiding Resistance Factor $\phi R_{n\_sr}$ - Design Shear Rupture Capacity of Section                            |      |
|                                                               | $\phi R_{n\_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$                                                                                     |      |
|                                                               | $\phi R_{n\_sr} = (1) 	imes 0.6 	imes (65 	ext{ ksi}) 	imes ig( 12.688 	ext{ in}^2 ig)$                                             |      |
|                                                               | $\phi R_{n\_sr} = 494.81 { m ~kip}$                                                                                                 |      |
|                                                               | Determine the governing shear capacity of the single plate.                                                                         |      |
| AISC 360-16 Chapter<br>J4.2 Eq. (J4-3)                        | $\phi R_{n\_sy} = 630 ~{ m kip}$ - Design shear yielding capacity of single plate                                                   |      |
| AISC 300-10 Chapter<br>J4.2 Eq. (J4-4)<br>AISC 360-16 Chapter | $\phi R_{n\_sr} = 494.81 	ext{ kip}$ - Design shear rupture capacity of single plate $\phi R_n$ - Governing Design Capacity         |      |
| J4.2                                                          | $\phi R_n = min \left( \phi R_n  _{su}, \phi R_n  _{sr} \right)$                                                                    |      |
|                                                               | dP = min((620  kin) (404.81  kin))                                                                                                  |      |
|                                                               | $\varphi_{1} u_n = min((0.50 \text{ klp}), (4.94.01 \text{ klp}))$                                                                  |      |
|                                                               | $\phi R_n = 494.81 	ext{ kip}$ Result:                                                                                              | PASS |
|                                                               | Demand over Capacity Ratio<br>$V_{\mu} = \frac{V_{\mu}}{V_{\mu}} = 0.00000$                                                         |      |
|                                                               | $DCR = \frac{1}{\phi R_n} = \frac{1}{(494.81 \text{ kip})} = 0.80839$ Check No. 7: Connection Detailing Limitations at Support Side |      |
|                                                               | Detailing Limitations Limit Value (in) Actual Value (in) DCR Result                                                                 |      |
|                                                               | Maximum Fillet Weld Size per Beam Clearance8.0000.5000.063PASS                                                                      |      |
|                                                               | Result:                                                                                                                             | PASS |
|                                                               | $DCR = \frac{d}{c} = \frac{(0.5)}{(8)} = 0.0625$                                                                                    |      |
|                                                               | Check No. 8: Design Capacity of Weld to Support Web                                                                                 |      |
|                                                               | $t_p = 1 	ext{ in - Single Plate Thickness}$                                                                                        |      |
|                                                               | $F_{up}=65~{ m ksi}$ - Single Plate Tensile Stress                                                                                  |      |
|                                                               | $	au_{ws}=0.44~{ m m}$ - Column Web Thickness $F_{us}=65~{ m ksi}$ - Column Tensile Stress                                          |      |
| AISC 15th Ed. Part 9 Eq.<br>(9-2)                             | $D_{max}$ - Maximum Fillet Weld Size for Base Metal Strength                                                                        |      |
|                                                               |                                                                                                                                     |      |





$$D_{max} = \frac{\frac{1}{2} F_{max}}{3.00 \text{ kip}/\text{im}}$$

$$D_{max} = \frac{(1.5 \text{ m}) \times (65 \text{ ks}) \leq (0.41 \text{ m}) \times (65 \text{ ks})}{(3.00 \text{ kip}/\text{m})}$$

$$D_{max} = 9.2567$$
Calculate the total effective weld length for NS/FS fillet welds.  

$$W = 0.5 \text{ in } \text{-fillet Weld Size}$$

$$d_{\mu} = 21 \text{ in : Single Fillet Oright}$$

$$L_{waster} = 0.3255 \text{ in : Maximum weld kength reduction}$$

$$L_{\mu} = 0.215 \text{ in : Here the Deglth}$$

$$L_{w} = 2 \cdot (d_{\mu} - 2 \cdot (W \leq 0.3125 \text{ in}))$$

$$L_{w} = 2 \cdot (0.5 \text{ in}) \leq (0.3125 \text{ in}))$$

$$L_{w} = 2 \cdot (0.5 \text{ in}) \leq (0.3125 \text{ in}))$$

$$L_{w} = 40.75 \text{ in}$$
Calculate the design capacity of weld in shear.  

$$P_{2XX} = 70 \text{ ks} \cdot \text{Filler Weld Size}$$

$$W = 0.5 \text{ in . Filler Weld Size for Base Metal Strength}$$

$$L_{w} = 40.75 \text{ in}$$
Calculate the design capacity of weld in shear.  

$$P_{2XX} = 70 \text{ ks} \cdot \text{Filler Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Here Weld Size}$$

$$d_{R_{w}} = 0.055 \text{ in . Steppendow Weld}$$

$$d_{R_{w}} = 0.055 \text{ in . Steppendow Weld}$$

$$d_{R_{w}} = 0.055 \text{ in . Steppendow Weld}$$

$$d_{R_{w}} = 0.055 \times 0.6 \times (70 \text{ ks}) \times \frac{\sqrt{2}}{2} \times \left( (0.5 \text{ in}) \le \frac{(0.2557)}{(28)} \right) \times (40.75 \text{ in})$$

$$d_{R_{w}} = 453.83 \text{ kip}$$

$$Examt:$$

$$Dematin dower Capacity fieldo
$$DCR = \frac{V_{K_{w}}}{V_{K_{w}}}} = \frac{(0.8320 \text{ Here}}{V_{K_{w}}} = 0.83130 \text{ Here}$$$$

PASS



| REFERENCES        | CALCULATIONS                                                              |         |          |       |        |  |  |
|-------------------|---------------------------------------------------------------------------|---------|----------|-------|--------|--|--|
| Summary of Checks |                                                                           |         |          |       |        |  |  |
|                   | Design Checks                                                             | Demand  | Capacity | DCR   | Result |  |  |
|                   | Connection Detailing Limitations at Beam Side                             | 2.667   | 3.000    | 0.889 | PASS   |  |  |
|                   | Design Capacity of the Bolt Group in Shear                                | 400.000 | 1121.549 | 0.357 | PASS   |  |  |
|                   | Design Capacity of the Bolt Group in Bearing and Tear-out on Single Plate | 400.000 | 2851.875 | 0.140 | PASS   |  |  |
|                   | Design Capacity of the Bolt Group in Bearing and Tear-out on Beam Web     | 400.000 | 2303.438 | 0.174 | PASS   |  |  |
|                   | Design Capacity of Single Plate in Block Shear                            | 400.000 | 495.422  | 0.807 | PASS   |  |  |
|                   | Design Capacity of Single Plate in Shear                                  | 400.000 | 494.813  | 0.808 | PASS   |  |  |
|                   | Connection Detailing Limitations at Support Side                          | 0.500   | 8.000    | 0.063 | PASS   |  |  |
|                   | Design Capacity of Weld to Support Web                                    | 400.000 | 453.830  | 0.881 | PASS   |  |  |

