REFERENCES	CALCULATIONS	RESULTS
	Beam to Column Web Shear Connection Calculations	
	Double Angle Connection AISC 360-16 LRFD	
	Design Load/s: $V_u=30~{ m kip}$ - Vertical Shear Load	
	Beam Section Properties: W18x35 - Beam Size $d_{bm} = 17.7$ in - Beam Depth	
	$t_{wb}=0.3~{ m in}$ - Beam Web Thickness $b_{fb}=6~{ m in}$ - Beam Flange Width $t_{fb}=0.425~{ m in}$ - Beam Flange Thickness	
	$H_{bm} = 10.5$ IIIF Deally AreaBeam Grade Information:A992- Material Grade $F_{yb} = 50$ ksi - Beam Yield Stress $F_{ub} = 65$ ksi - Beam Tensile Stress $E = 29000$ ksi - Beam Modulus of Elasticity	
	Column Section Properties: $W14x90$ - Column Size $d_{sup} = 14$ in - Column Depth $t_{ws} = 0.44$ in - Column Web Thickness $b_{fs} = 14.5$ in - Column Flange Width	
	$t_{fs} = 0.71$ m - Column Flange Thickness $A_{sup} = 26.5 \text{ in}^2$ - Column Area Column Grade Information: A992 - Material Grade $F_{ys} = 50$ ksi - Column Yield Stress	
	$F_{us}=65~{ m ksi}$ - Column Tensile Stress $E=29000~{ m ksi}$ - Column Modulus of Elasticity Bolt Information at Column:	
	3/4 in - Bolt Size A325N - Bolting Category $d_b = 0.75$ in - Bolt Diameter $F_{nt} = 90$ ksi - Bolt Nominal Tensile Strength $F_{nv} = 54$ ksi - Bolt Nominal Shear Strength $N_s = 2$ - Number of Shear Planes	
	HSSL - Bolt Hole Type at Angle STD - Bolt Hole Type at Support Weld Information at Beam:	
	m E70XX - Weld Classification $W=0.3125~{ m in}$ - Fillet Weld Size $F_{EXX}=70~{ m ksi}$ - Filler Metal Classification Strength	
	Angle Properties: $L5x3-1/2x1/2$ - Double Angle Section $d_a = 12$ in - Angle Depth $t_a = 0.5$ in - Double Angle Thickness $b_{a_NSL} = 3.5$ in - Double Angle Leg Width at Beam	
	$b_{a_OSL} = 5 \text{ in}$ - Double Angle Leg Width at Support Angle Material Grade: $F_{ya} = 36 \text{ ksi}$ - Double Angle Yield Stress $F_{ua} = 58 \text{ ksi}$ - Double Angle Tensile Stress	
	Connection Geometry at Beam:C-Shaped- Weld Shape $clr = 0.5$ in - Beam Web Clearance $kL = 3$ in - Horizontal Weld Length at Beam $L = 12$ in - Vertical Weld Length at Beam $e = 3$ in - Weld Group Eccentricity at Beam	
	Connection Geometry at Support: $n_r = 4$ - Number of Bolt Rows $s_r = 3$ in - Bolt Row Spacing $n_c = 1$ - Number of Bolt Columns $s_c = 0$ in - Bolt Column Spacing	
	Distance information at Support: g = 5 in - Gage at Support $L_{ev_a} = 1.5$ in - Vertical Edge Distance on Angle at Support $L_{eh_a} = 2.65$ in - Horizontal Edge Distance on Angle at Support e = 0 in - Bolt Eccentricity at Support	

	$a_{ct} = 0.15$ in - Cope Depth at Double Plate (a	ssume 0)					
	$F_{ub}=65~{ m ksi}$ - Beam Tensile Stress						
AISC 15th Ed. Part 9 Eq. (9-2)	D_{max} - Maximum Fillet Weld Size for Base Met	tal Strength					
	$D_{max} = rac{t_a \ F_{ua} \ \leq d_{ct} \ F_{ub}}{3.09 \ \mathrm{kip/in}}$						
		$D_{max} = rac{(0.5)}{2}$	${ m in}) imes (58 { m ~ksi}) \le (0 \ (3.09 { m ~kip}))$	$(15 ext{ in}) imes (65 ext{ ksi})$			
			$D_{max} = 3.1553$				
	Calculate the C-coefficient of the weld gr	oup.					
	$L=12~{ m in}$ - Vertical Weld Length at Beam						
	$kL=3~{ m in}$ - Horizontal Weld Length at Beam						
	$e=3~{ m in}$ - Weld Group Eccentricity at Beam						
AISC 15th Ed. Page 8-9 to 8-12	The weld coefficient C is derived using the inst below.	tantaneous cente	er of rotation method	. The coordinates of e			
	Weld Segment No. 1 is located at the bottom-r	ight end of the w	veld group.				
		Segment No.	x-coordinate (in)	y-coordinate (in)			
		1	2.63	0.00			
		2	1.88	0.00			
		3	1.13	0.00			
		4	0.38	0.00			
		5	0.00	0.43			
		6	0.00	1.29			
		7	0.00	2.14			
		8	0.00	3.00			
		9	0.00	3.86			
		10	0.00	4.71			
		11	0.00	5.57			
		12	0.00	6.43			
		13	0.00	7.29			
		14	0.00	8.14			
		15	0.00	9.00			
		16	0.00	9.86			
		17	0.00	10.71			
	18 0.00 11.57						
		19	0.38	12.00			
		20	1.13	12.00			
		21	1.88	12.00			

22

2.63

12.00

C 15th Ed. Page 8-9 to 8-12	The location of the instantaneous center	r with respect to th	ne origin is o	calculated us	sing iteration	s. The resultin	coordinates of the I.C. are	e as follows
	$x_{ic} = -5.4 ext{ in}$ - Location of I.C. along the	e X-axis						
	$y_{ic} = 0$ m - Location of I.C. along the Y-a	1XIS	weld size of	1/16" inch-	c and wold -	lectrode of CC-	NXX the corresponding to	actions
	weld segment are listed below.	3), with standard v	weld size of	1/16" inche	s and weld e	electrode of FE	JXX, the corresponding rea	actions pe
		Segment No.	Ru (kip)	Rux (kip)	Ruy (kip)	Mn (kip-in)		
		1	1.86	1.11	1.49	18.59		
		2	1.85	1.18	1.43	17.45		
		3	1.83	1.24	1.35	16.22		
		4	1.80	1.29	1.24	14.95		
		5	2.07	1.49	1.44	16.09		
		6	2.00	1.31	1.51	14.33		
		8	1.30	0.87	1.55	11.04		
		9	1.66	0.61	1.54	9.62		
		10	1.52	0.35	1.48	8.42		
		11	1.36	0.11	1.35	7.36		
		12	1.36	-0.11	1.35	7.36		
		13	1.52	-0.35	1.48	8.42		
		14	1.66	-0.61	1.54	9.62		
		16	1.90	-1.11	1.55	12.62		
		17	2.00	-1.31	1.51	14.33		
		18	2.07	-1.49	1.44	16.09		
		19	1.80	-1.29	1.24	14.95		
		20	1.83	-1.24	1.35	16.22		
		21	1.85	-1.18	1.43	17.45		
		22	1.86	-1.11	1.49	18.59		
	$C=2.6554~{ m kip/in}$ - Calculated Weld G	Froup Coefficient						
	Calculate the design capacity of we	ld group in shea	r.					
ISC 15th Ed Tabla 0 2	$C = 2.6554 ext{ kip/in}$ - Calculated Weld G	roup Coefficient						
ыс тэш ей. Таріе 8-3	$\upsilon_1=$ 1 - Electrode Strength Coefficient $D=5$ - Fillet Weld Size in D (in 1/16th c	of an inch)						
SC 15th Ed. Part 9 Eq.	$D_{max}=3.1553$ - Maximum Fillet Weld 3	Size for Base Meta	l Strength					
(9-2)	$2L=24~{ m in}$ - Twice Vertical Weld Length							
	$\phi=0.75$ - Fillet Weld Resistance Factor							
SC 15th Ed. Part 8 Eq. (8-21)	ϕR_n - Design Strength of Weld Group							
			$\phi R = \star q$	$C_1 (D < C_1)$	$D_{\rm m} \rightarrow 9T$			
				$\cup \cup_1 (D \leq$	ν_{max}) 4L			
		$\phi R_n = (0.75) imes ($	2.6554 kip	$/{ m in}) imes$ (1) >	$<((5)\leq (3.5)$	$(1553)) imes(24~{ m i})$	1)	
		. , (1	/		· · · · · ·		
			ϕR	n = 150.82	kip			
	Result:							
	Demand over Capacity Ratio							
	$DCR = rac{V_u}{\phi R_n} = rac{(30 \text{ kip})}{(150.82 \text{ kip})} = 0.19892$							
	Check No. 3: Design Capacity of Do	uble Angle in She	ear at Bea	m Side				

$$S = rac{(2t_a) \; (d_a)^2}{6} = rac{(1 \; ext{in}) imes ((12 \; ext{in}))^2}{6} = 24 \; ext{in}^3$$

Calculate the flexural capacity of the double angle.

 $Z=36~{
m in}^3$ - Plastic Section Modulus

 $S=24~{
m in}^3$ - Elastic Section Modulus

	$\phi=0.9$ - Flexure Resistance Factor	
AISC 360-16 Chapter F11.1 Eq. (F11-1)	ϕM_n - Design Flexural Capacity of Coped Section	
	$\phi M_n = \phi \ (F_{ ua} \ Z \leq 1.6 \ F_{ ua} \ S)$	
	$\phi M_n = (0.9) \times ((36 \text{ ksi}) \times \left(36 \text{ in}^3\right) \leq 1.6 \times (36 \text{ ksi}) \times \left(24 \text{ in}^3\right))$	
	$\phi M_n = 97.2~{ m kipft}$	
	Calculate the equivalent shear capacity of the double angle.	
AISC 360-16 Chapter F11.1 Eq. (F11-1)	$\phi M_n = 97.2 { m ~kipft}$ - Design Flexural Capacity of Coped Section	
	$L_b=0.5~{ m in}$ - Double Angle Unbraced Length at Beam	
	φv_n - Design capacity of single plate in bending	
	$\phi V_n = rac{\phi M_n}{L_b}$	
	$\phi V_n = rac{(97.2 ext{ kipft})}{(1000000000000000000000000000000000000$	
	(0.5 m)	
	$\phi V_n = 2332.8 ~{ m kip}$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = rac{V_u}{\phi V_n} = rac{(30 ext{ kip})}{(2332.8 ext{ kip})} = 0.01286$	
	Check No. 5: Shear and Moment Interaction of Double Angle at Beam Side	
	Calculate the shear and moment interaction of the double angle.	
	$V_r = 30 \text{ kip}$ - Vertical Shear Load Moment at Component	
	$M_r = V_r \ L_b = (30 \ { m kip}) imes (0.5 \ { m in}) = 1.25 \ { m kipft}$	
AISC 360-16 Chapter J4.2 Eq. (J4-3)	$\phi V_n = 259.2 ~{ m kip}$ - Design Shear Yielding Capacity of Section	
AISC 360-16 Chapter F11.1 Eq. (F11-1)	$\phi M_n = 97.2 { m ~kipft}$ - Design Flexural Capacity of Double Angle	
AISC 15th Edition pg. (10- 90) Eq. (10-5)	I_{nt} - Interaction for Shear Yielding/Buckling and Flexure	
	$(V_{r})^2 (M_{r})^2$	
	$I_{nt}=\left(rac{Vr}{\phi V_n} ight) + \left(rac{Mr}{\phi M_n} ight)$	
	$I_{nt} = \left(\frac{(30 \text{ kip})}{(250.2 \text{ kirs})}\right)^2 + \left(\frac{(1.25 \text{ kipft})}{(07.2 \text{ kirsft})}\right)^2$	
	(259.2 kip) / (97.2 kipit) /	
	$I_{nt}=0.013561$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = \frac{n_{nt}}{1.0} = \frac{(0.010001)}{(1)} = 0.013561$	
	Check No. 6: Connection Detailing Limitations at Support Side	
	Detailing Limitations Limit Value (in) Actual Value (in) DCR Result	
	Minimum Bolt Row Spacing2.0003.0000.667PASS	
	Maximum Bolt Row Spacing6.0003.0000.500PASS	
	Angle Minimum Vertical Edge Distance 1.000 1.500 0.667 PASS Angle Minimum Vertical Edge Distance 1.125 2.650 0.425 PASS	
	Angle Minimum Horizontal Edge Distance 1.125 2.650 0.425 PASS Maximum Connection Width 10.750 10.300 0.958 PASS	
	Minimum Bolt Gage for Double Angle1.8135.0000.362PASS	
	Result:	PASS
	Demand over Capacity Ratio	1,55
	$DCR = rac{d}{c} = rac{(10.3)}{(10.75)} = 0.95814$	
	Check No. 7: Design Capacity of the Bolt Group in Shear at Support Side	
	Vu	
	BEAM WEB	
	Fig. Bolt group lay-out	
	Calculate the design shear capacity of the bolt group.	
	For bolts at Support, the full capacity of the bolt group will be considered.	
	Calculate the design shear capacity of the bolt group. $F_{-} = 54$ ksi - Bolt Nominal Shear Strength	
	$d_b = 0.75 ext{ in - Bolt Diameter}$	
	$N_s=1$ - Number of Shear Planes	
NISC 260 16 Chantar	C=8 - Bolt Group Coefficient	
J5.2(a)	$n_f = 1$ - Filler Factor for Bearing Bolts	
	$\phi = 0.79$ - Boit Snear Resistance Factor	

Connection Design Report

AISC 360-16 Chapter J3.6 Eq. (J3-1)	ϕR_n - Design Bolt Shear Capacity	
	$\phi R_n = \phi \ F_{nv} \ rac{\pi}{4} \left(d_b ight)^2 \ N_s \ C \ h_f$	
	$\phi R_n = (0.75) imes (54 ext{ ksi}) imes rac{\pi}{4} imes ((0.75 ext{ in}))^2 imes (1) imes (8) imes (1)$	
	$\phi R_n = 143.14~{ m kip}$	
	Result: Demand over Capacity Ratio $DCR = rac{V_r}{\phi R_n} = rac{(30 ext{ kip})}{(143.14 ext{ kip})} = 0.20959$	PASS
	Check No. 8: Design Capacity of the Bolt Group in Bearing and Tear-out on Double Angle at Support Side	
	Fig. Clear distances for bolt bearing check on angle.	
	Calculate the bolt bearing capacity of the double angle. $d_b = 0.75$ in - Bolt Diameter $t_a = 0.5$ in - Double Angle Thickness $F_{ua} = 58$ ksi - Double Angle Tensile Stress C = 8 - Bolt Group Coefficient	

AISC 360-16 Chapter J3.10 Eq. (J3-6a) $\phi R_{n_bearing}$ - Design Bolt Bearing Capacity of Section $\phi R_{n_bearing} = \phi \ 2.4 \ d_b \ t_a \ F_{ua} \ C$ $\phi R_{n_bearing} = (0.75) imes 2.4 imes (0.75 ext{ in}) imes (0.5 ext{ in}) imes (58 ext{ ksi}) imes (8)$

 $\phi=0.75$ - Bolt Bearing Resistance Factor

 $\phi R_{n_bearing} = 313.2 \; {
m kip}$

Calculate the clear distance of outer bolts on double angle.

 $L_{ev_a} = 1.5 \; {
m in}$ - Vertical Edge Distance on Angle at Support

 $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Angle

 l_{c1} - Clear Distance at First Bolt Row

$$l_{c1}=L_{ev_a}-rac{d_h}{2}$$

$$l_{c1} = (1.5 ext{ in}) - rac{(0.8125 ext{ in})}{2}$$

$$l_{c1} = 1.0938$$
 in

Calculate the clear distance of inner bolts on double angle.

 $s_r=3~{
m in}$ - Bolt Row Spacing

 $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Angle

 l_{c2} - Clear Distance at Rest of Bolts

 $l_{c2} = s_r - d_h$

$$l_{c2} = (3 ext{ in}) - (0.8125 ext{ in})$$

 $l_{c2} = 2.1875 ext{ in }$

Calculate the bolt tear-out capacity of the double angle.

 $l_{c1}=1.0938~{
m in}$ - Clear Distance at First Bolt Row

 $l_{c2}=2.1875~{
m in}$ - Clear Distance at Rest of Bolts

 $t_a=0.5~{
m in}$ - Double Angle Thickness

 $F_{ua}=58~{
m ksi}$ - Double Angle Tensile Stress

C=8 - Bolt Group Coefficient

 $n_r=4$ - Number of Bolt Rows

 $\phi=0.75$ - Bolt Bearing Resistance Factor

AISC 360-16 Chapter J3.10 Eq. (J3-6c) $\phi R_{n_tearout}$ - Design Bolt Tear-out Capacity of Section

	$\phi R_{n_tearout} = \phi \left[1.2 l_{c1} t_a F_{ua} + 1.2 l_{c2} t_a F_{ua} \left(n_r - 1 ight) ight] \left(rac{C}{n_r} ight)$	
	$\phi R_{n_tearout} = (0.75) imes [1.2 imes (1.0938 ext{ in}) imes (0.5 ext{ in}) imes (58 ext{ ksi}) + 1.2 imes (2.1875 ext{ in}) imes (0.5 ext{ in}) imes ((4) - 1)] imes \left(rac{(8)}{(4)} ight)$	
	((4) /	
	$\phi R_{n_tearout} = 399.00 ext{ klp}$	
NISC 260 16 Chapter 12 10	Determine the governing bearing and tear-out capacity of the bolt group on double angle.	
AISC 300-10 Chapter J3.10 Eq. (J3-6a)	$\phi R_{n_bearing} = 313.2~{ m kip}$ - Design bolt bearing capacity of double angle	
AISC 300-10 Chapter J3.10 Eq. (J3-6c)	$\phi R_{n_tearout} = 399.66~{ m kip}$ - Design bolt tear-out capacity of double angle	
AISC 500-10 Chapter JS.10	φ_{R_n} - Governing Design Capacity	
	$\phi R_n = min\left(\phi R_{n_bearing}, \phi R_{n_tearout} ight)$	
	$\phi R_n = min\left(\left(313.2 \text{ kip}\right), \left(399.66 \text{ kip}\right)\right)$	
	$\phi R_n = 313.2 ~{ m kip}$	
	Result: Demand over Capacity Ratio	PASS
	$DCR = rac{V_r}{\phi B_r} = rac{(30 ext{ kip})}{(313.2 ext{ kip})} = 0.095785$	
	Check No. 9: Design Capacity of the Bolt Group in Bearing and Tear-out at Support Web	
	П	
	SUPPORT	
	Fig. Clear distances for bolt bearing check on member	
	Calculate the bolt bearing capacity of the member.	
	$d_b=0.75~{ m in}$ - Bolt Diameter	
	$t_{ws} = 0.44~{ m in}$ - Column Web Thickness $F_{ub} = 65~{ m ksi}$ - Beam Tensile Stress	
	C=8 - Bolt Group Coefficient	
AISC 360-16 Chapter I3 10	$\phi=0.75$ - Bolt Bearing Resistance Factor	
Eq. (J3-6a)	$\phi R_{n_bearing}$ - Design Bolt Bearing Capacity of Section	
	$\phi R_{n_bearing} = \phi \ 2.4 \ d_b \ t_{ws} \ F_{ub} \ C$	
	$\phi R_{n_bearing} = (0.75) imes 2.4 imes (0.75 ext{ in}) imes (0.44 ext{ in}) imes (65 ext{ ksi}) imes (8)$	
	$\phi R_{n_bearing} = 308.88 ~{ m kip}$	
	Calculate the clear distance of inner bolts on member.	
	$s_r=3~{ m in}$ - Bolt Row Spacing	
	$d_h = 0.8125 ext{ in}$ - Vertical Bolt Hole Dimension at Support l_{c2} - Clear Distance at Rest of Bolts	
	$l_{c2}=s_r-d_h$	
	$l_{c2} = (3 ext{ in}) - (0.8125 ext{ in})$	
	$l_{-} = 2.1875$ in	
	$v_{CZ} = 2.1070 \text{ m}$	
	Calculate the bolt tear-out capacity of the member. $l_{c2}=2.1875~{ m in}$ - Clear Distance at Rest of Bolts	
	$t_{ws}=0.44~{ m in}$ - Column Web Thickness	
	$F_{ub}=65~{ m ksi}$ - Beam Tensile Stress C=8 - Bolt Group Coefficient	
	$\phi = 0.75$ - Bolt Bearing Resistance Factor	
AISC 360-16 Chapter J3.10 Eq. (J3-6c)	$\phi R_{n_tearout}$ - Design Bolt Tear-out Capacity of Section	
	$\phi R_{n_tearout} = \phi \ 1.2 \ l_{c2} \ t_{ws} \ F_{ub} \ C$	
	$\phi R_{n_tearout} = (0.75) imes 1.2 imes (2.1875 ext{ in}) imes (0.44 ext{ in}) imes (65 ext{ ksi}) imes (8)$	
	$\phi R_{n\ tearout} = 450.45 \ { m kip}$	
	Determine the governing bearing and tear-out canacity of the bolt group on member	
	becerning the governing bearing and tear-out capacity of the bolt group on member.	

Connection Design Report

AISC 360-16 Chapter J3.10 Eq. (J3-6a)	$\phi R_{n_bearing} = 308.88~{ m kip}$ - Design bolt bearing capacity of member	
AISC 360-16 Chapter J3.10 Eq. (J3-6c)	$\phi R_{n_tearout} = 450.45~{ m kip}$ - Design bolt tear-out capacity of member	
AISC 360-16 Chapter J3.10	ϕR_n - Governing Design Capacity	
	$\phi R_n = min\left(\phi R_{n_bearing}, \phi R_{n_tearout} ight)$	
	$\phi R_n = min\left(\left(308.88 \; {\rm kip} \right), \left(450.45 \; {\rm kip} \right) \right)$	
	$\phi R_n = 308.88~{ m kip}$	
	Result: Demand over Capacity Ratio	PASS
	$DCR = rac{V_r}{\phi R_n} = rac{(30 ext{ kip})}{(308.88 ext{ kip})} = 0.097125$	
	Check No. 10: Design Capacity of Double Angle in Block Shear at Support Side	
	Vu vu b c c c c c c c c c c c c c	
	Fig. Double angle block shear pattern for shear load.	
	Calculate the net area of the double angle subject to tension. $(2t_a) = 1$ in - Combined Double Angle Thickness $n_c = 1$ - Number of Bolt Columns $s_c = 0$ in - Bolt Column Spacing $L_{ch_a} = 2.65$ in - Horizontal Edge Distance on Angle at Support $d_h = 1$ in - Horizontal Bolt Hole Dimension at Angle A_{nt} - Net Area Subject to Tension (L-pattern) $A_{nt} = (2t_a) [(n_c - 1) s_c + L_{ch_a} - (n_c - 0.5) (d_h + 0.0625 in)]$ $A_{nt} = (1 in) \times [((1) - 1) \times (0 in) + (2.65 in) - ((1) - 0.5) \times ((1 in) + (0.0625 in))]$	
	$A_{nt}=2.1187~{\rm in}^2$	

 $(2t_a) = 1$ in - Combined Double Angle Thickness

 $L_{ev_a}=1.5~{
m in}$ - Vertical Edge Distance on Angle at Support

 $n_r=4$ - Number of Bolt Rows

 $s_r=3~{
m in}$ - Bolt Row Spacing

 $A_{gv}\,$ - Gross Area Subject to Shear (L-pattern)

$$A_{gv} = (2t_a) \, \left[L_{ev_a} + (n_r - 1) \, \, s_r
ight] \, .$$

$$A_{gv} = (1 ext{ in}) imes [(1.5 ext{ in}) + ((4) - 1) imes (3 ext{ in})]$$

 $A_{gv}=10.5~{
m in}^2$

Calculate the net area of the double angle subject to shear.

 $(2t_a)=1 ext{ in}$ - Combined Double Angle Thickness

 $d_a=12~{
m in}$ - Angle Depth

 $L_{ev_a} = 1.5 ~{
m in}$ - Vertical Edge Distance on Angle at Support

 $n_r=4$ - Number of Bolt Rows

 $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Angle

 $A_{nv}\,$ - Net Area Subject to Shear (L-pattern)

$$A_{nv} = (2t_a) \, \left[d_a - L_{ev_a} - (n_r - 0.5) \, \left(d_h + 0.0625 \; {
m in}
ight)
ight]$$

$$A_{nv} = (1 ext{ in}) imes [(12 ext{ in}) - (1.5 ext{ in}) - ((4) - 0.5) imes ((0.8125 ext{ in}) + (0.0625 ext{ in}))$$

 $A_{nv}=7.4375~{\rm in}^2$

Calculate the design block shear capacity of the double angle.

 $F_{ua}=58~{
m ksi}$ - Double Angle Tensile Stress

 $A_{nv}=7.4375~{
m in}^2$ - Net Area Subject to Shear (L-pattern)

 $U_{bs}=1$ - Uniformity factor for single line of bolts

 $A_{nt}=2.1187~{
m in}^2$ - Net Area Subject to Tension (L-pattern)

 $F_{ya}=36~{
m ksi}$ - Double Angle Yield Stress

 $A_{gv}=10.5~{
m in}^2$ - Gross Area Subject to Shear (L-pattern)

 $\phi=0.75$ - Block Shear Resistance Factor

AISC 360-16 Chapter J4.3 Eq. (J4-5) ϕR_n - Design Block Shear Capacity of Section

$$\phi R_n = \phi \, \left(0.6 \, F_{ua} \, A_{nv} + U_{bs} \, F_{ua} \, A_{nt} \, \le 0.6 \, F_{ya} \, A_{gv} + U_{bs} \, F_{ua} \, A_{nt}
ight)$$

 $\phi R_n = (0.75) \times \left(0.6 \times (58 \text{ ksi}) \times \left(7.4375 \text{ in}^2\right) + (1) \times (58 \text{ ksi}) \times \left(2.1187 \text{ in}^2\right) \le 0.6 \times (36 \text{ ksi}) \times \left(10.5 \text{ in}^2\right) + (1) \times (58 \text{ ksi}) \times \left(2.1187 \text{ in}^2\right)\right)$

	Calculate the net area of double angle subject to rupture.	
	$(2t_a)=1~{ m in}$ - Combined Double Angle Thickness	
	$d_a=12~{ m in}$ - Angle Depth	
	$n_r=4$ - Number of Bolt Rows	
	$d_h = 0.8125~{ m in}$ - Vertical Bolt Hole Dimension at Angle	
	A_{nv} - Section Net Area	
	$A_{nv} = (2t_a) \; [d_a - n_r \; (d_h + 0.0625 \; { m in})]$	
	$A_{nv} = (1 \text{ in}) \times [(12 \text{ in}) - (4) \times ((0.8125 \text{ in}) + (0.0625 \text{ in}))]$	
	$A_{nv}=8.5~{\rm in}^2$	
	Calculate the shear rupture capacity of the double angle.	
	$F_{ua}=58~{ m ksi}$ - Double Angle Tensile Stress	
	$A_{nv}=8.5~{ m in}^2$ - Section Net Area	
	$\phi=1$ - Shear Yielding Resistance Factor	
AISC 360-16 Chapter J4.2 Eq. (J4-4)	ϕR_{n_sr} - Design Shear Rupture Capacity of Section	
	$\phi R_{n_sr} = \phi \ 0.6 \ F_{ua} \ A_{nv}$	
	$\phi P = -(1) \times 0.6 \times (58 \text{ km}^2)$	
	$\varphi_{II}n_{sr} = (1) \times 0.0 \times (50 \text{ ksi}) \times (0.5 \text{ m})$	
	$\phi R_{n_sr} = 295.8 ~{ m kip}$	
	Determine the governing shear capacity of the double angle.	
AISC 360-16 Chapter J4.2 Eq. (J4-3)	$\phi R_{n_sy} = 259.2~{ m kip}$ - Design shear yielding capacity of double angle	
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$\phi R_{n_sr} = 295.8~{ m kip}$ - Design shear rupture capacity of double angle	
AISC 360-16 Chapter J4.2	ϕR_n - Governing Design Capacity	
	$\phi R_n = min\left(\phi R_{n_sy}, \phi R_{n_sr} ight)$	
	$\phi R_n = min\left(\left(259.2~{\rm kip}\right), \left(295.8~{\rm kip}\right)\right)$	
	$\phi R_n = 259.2 ~{ m kip}$	
	Result:	PASS
	Demand over Capacity Ratio $V_{\rm r} = (30 \text{ kip})$	
	$DCR = \frac{1}{\phi R_n} = \frac{1}{(259.2 \text{ kip})} = 0.11574$	
	Check No. 12: Design Capacity of Double Angle in Flexure Using Double Coped Procedure at Support Side	

Connection Design Report

Fig. Double angle subject to flexure.

Calculate and compare upper and lower limits.

- $E=29000~{
 m ksi}$ Modulus for Steel
- $F_{ya}=36~{
 m ksi}$ Double Angle Yield Stress
- $L_b=2.35~{
 m in}$ Double Angle Unbraced Length at Support
- $d_a=12~{
 m in}$ Angle Depth
- $(2t_a)=1 ext{ in}$ Combined Double Angle Thickness

Depth to Thickness Ratio

$$rac{L_b d}{t^2} = rac{(2.35 ext{ in}) imes (12 ext{ in})}{(1 ext{ in})^2} = 28.2$$

Depth to Thickness Ratio Lower Limit

$$rac{0.08E}{F_y} = rac{0.08 imes (29000 \, \mathrm{ksi})}{(36 \, \mathrm{ksi})} = 64.444$$

Depth to Thickness Ratio Upper Limit

$$rac{1.9E}{F_y} = rac{1.9 imes (29000 \, {
m ksi})}{(36 \, {
m ksi})} = 1530.6$$

So,
$$rac{L_b d}{t^2} \leq rac{0.08 E}{F_y}.$$

Calculate the plastic section modulus of the double angle.

 $(2t_a)=1 {
m ~in}$ - Combined Double Angle Thickness

 $d_a=12~{
m in}$ - Angle Depth

Plastic Section Modulus

$$Z = rac{(2t_a) (d_a)^2}{4} = rac{(1 ext{ in}) imes ((12 ext{ in}))^2}{4} = 36 ext{ in}^3$$

Calculate the elastic section modulus of the double angle.

 $(2t_a)=1 ext{ in}$ - Combined Double Angle Thickness $d_a=12~{
m in}$ - Angle Depth Elastic Section Modulus

$$S = rac{(2t_a) \; (d_a)^2}{6} = rac{(1 \; ext{in}) imes ((12 \; ext{in}))^2}{6} = 24 \; ext{in}^3$$

	Calculate the flexural capacity of the double angle.	
	$Z=36~{ m in}^3$ - Plastic Section Modulus	
	$S=24~{ m in}^3$ - Elastic Section Modulus	
	$\phi=0.9$ - Flexure Resistance Factor	
AISC 360-16 Chapter F11.1 Eq. (F11-1)	ϕM_n - Design Flexural Capacity of Coped Section	
	$\phi M_n = \phi \left(F_{ya} \; Z \leq 1.6 \; F_{ya} \; S ight)$	
	$\phi M_n = (0.9) \times ((36 \text{ ksi}) \times \left(36 \text{ in}^3\right) \leq 1.6 \times (36 \text{ ksi}) \times \left(24 \text{ in}^3\right))$	
	$\phi M_n = 97.2 \; { m kipft}$	
	Calculate the equivalent shear capacity of the double angle.	
AISC 360-16 Chapter F11.1 Eq. (F11-1)	$\phi M_n = 97.2 { m ~kipft}$ - Design Flexural Capacity of Coped Section	
	$L_b=2.35~{ m in}$ - Double Angle Unbraced Length at Support	
	ϕV_n - Design Capacity of Single Plate in Bending	
	$\phi V_n = rac{\phi M_n}{L}$	
	L_b	
	(97.2 kinft)	
	$\phi V_n = \frac{(0.12 \text{ mpr})}{(2.35 \text{ in})}$	
	$\phi V_n = 496.34 ~{ m kip}$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = \frac{V_r}{V_r} = \frac{(30 \text{ kip})}{0.060442}$	
	ϕV_n (496.34 kip)	
	Check No. 13: Shear and Moment Interaction of Double Angle at Support Side	
	Calculate the shear and moment interaction of the double angle.	
	$V_r = 30 \text{ kip}$ - Vertical Shear Load	
	$M = V L_{t} = (30 \text{ kin}) \times (2.35 \text{ in}) = 5.875 \text{ kinft}$	
AISC 360-16 Chapter J4.2	$M_r = V_r L_0 = (50 \text{ Mp}) \times (2.50 \text{ m}) = 0.010 \text{ Mpr}$ $dV_r = 250.2 \text{ kin}$. Design shear violding conscituted double angle	
Eq. (J4-3) AISC 360-16 Chapter	$\phi V_n = 239.2 ext{ kip}$ - Design shear yielding capacity of double angle $\phi M_n = 97.2 ext{ kipft}$ - Design Flexural Capacity of Double Angle	
AISC 15th Edition pg. (10-	I a Interaction for Shear Vielding/Buckling and Elevure	
90) Eq. (10-5)		
	$I_{nt} = \left(rac{V_r}{\phi V_n} ight)^2 + \left(rac{M_r}{\phi M_n} ight)^2$	

$I_{nt} = \left(rac{(30 ext{ kip})}{(259.2 ext{ kip})} ight)^2 + \left(rac{(5.875 ext{ kipft})}{(97.2 ext{ kipft})} ight)^2$	
$I_{nt}=0.017049$	
Result:Demand over Capacity Ratio $DCR = \frac{I_{nt}}{1.0} = \frac{(0.017049)}{(1)} = 0.017049$	PASS

REFERENCES	CALCULATIONS					RESULTS
	Design Checks	Demand	Capacity	DCR	Result	
	Connection Detailing Limitations at Beam Side	12.000	14.031	0.855	PASS	
	Design Capacity of Weld at Beam Side	30.000	150.817	0.199	PASS	
	Design Capacity of Double Angle in Shear at Beam Side	30.000	259.200	0.116	PASS	
	Design Capacity of Double Angle in Flexure Using Double Coped Procedure at Beam Side	30.000	2332.800	0.013	PASS	
	Shear and Moment Interaction of Double Angle at Beam Side	0.014	1.000	0.014	PASS	
	Connection Detailing Limitations at Support Side	10.300	10.750	0.958	PASS	
	Design Capacity of the Bolt Group in Shear at Support Side	30.000	143.139	0.210	PASS	
	Design Capacity of the Bolt Group in Bearing and Tear-out on Double Angle at Support Side	30.000	313.200	0.096	PASS	
	Design Capacity of the Bolt Group in Bearing and Tear-out at Support Web	30.000	308.880	0.097	PASS	
	Design Capacity of Double Angle in Block Shear at Support Side	30.000	262.266	0.114	PASS	
	Design Capacity of Double Angle in Shear at Support Side	30.000	259.200	0.116	PASS	
	Design Capacity of Double Angle in Flexure Using Double Coped Procedure at Support Side	30.000	496.340	0.060	PASS	
	Shear and Moment Interaction of Double Angle at Support Side	0.017	1.000	0.017	PASS	
		-				

