REFERENCES	CALCULATIONS	RESULTS
	Shear Connection Calculations	
	Single Plate Connection AISC 360-16 LRFD	
	Design Load/s: $V_u=30~{ m kip}$ - Vertical Shear Load	
	Beam Section Properties:W16x26 - Beam Size $d_{bm} = 15.7$ in - Beam Depth $t_{wb} = 0.25$ in - Beam Web Thickness $b_{fb} = 5.5$ in - Beam Flange Width $t_{fb} = 0.345$ in - Beam Flange Thickness $A_{bm} = 7.68$ in ² - Beam AreaBeam Grade Information:A992 - Material Grade $F_{yb} = 50$ ksi - Beam Yield Stress $E = 29000$ ksi - Beam Modulus of ElasticityCope Information: $L_{ct} = 2.875$ in - Length of Cope at Top $D_{ct} = 3$ in - Depth of Cope at Top	
	$\begin{array}{l} \textbf{Girder Section Properties:}\\ W18x35 & - \text{Girder Size}\\ d_{sup} = 17.7 \text{ in - Girder Depth}\\ t_{ws} = 0.3 \text{ in - Girder Web Thickness}\\ b_{fs} = 6 \text{ in - Girder Flange Width}\\ t_{fs} = 0.425 \text{ in - Girder Flange Thickness}\\ A_{sup} = 10.3 \text{ in}^2 \text{ - Girder Area}\\ \textbf{Girder Grade Information:}\\ A992 & - \text{Material Grade}\\ F_{ys} = 50 \text{ ksi - Girder Yield Stress}\\ F_{us} = 65 \text{ ksi - Girder Tensile Stress}\\ E = 29000 \text{ ksi - Girder Modulus of Elasticity} \end{array}$	
	Bolt Information at Beam: $3/4$ in- Bolt Size $A325N$ - Bolting Category $d_b = 0.75$ in- Bolt Diameter $F_{nt} = 90$ ksi- Bolt Nominal Tensile Strength $F_{nv} = 54$ ksi- Bolt Nominal Shear Strength $N_s = 1$ - Number of Shear PlanesHSSL- Bolt Hole Type at PlateSTD- Bolt Hole Type at Beam	
	Weld Information at Girder: $E70XX$ - Weld Classification $W = 0.3125$ in - Fillet Weld Size $F_{EXX} = 70$ ksi - Filler Metal Classification Strength	
	Single Plate Geometry: $b_p = 4.5$ in - Single Plate Width $d_p = 9$ in - Single Plate Depth $t_p = 0.5$ in - Single Plate ThicknessSingle Plate Material Grade: $F_{yp} = 36$ ksi - Single Plate Yield Stress $F_{up} = 58$ ksi - Single Plate Tensile StressConnection Geometry: $n_c = 3$ - Number of Bolt Rows $s_r = 3$ in - Bolt Row Spacing $n_c = 1$ - Number of Bolt Columns $s_c = 0$ in - Bolt Columns Spacing $Distances:$ $clr = 0.5$ in - Beam Web Clearance L_{cr} $v_m = 2.8188$ in - Vertical Edge Distance on Top-Coped Beam Web L_{cr} $v_m = 2.5$ in - Nortical Edge Distance on Single Plate $e = 2.5$ in - Bolt Group Eccentricity	

Ο

	Calculate the C-coefficient of the bolt group.	ιų	. Doit group i	ay out.				
AISC 15th Edition Table	$e=1.25~{ m in}$ - Design Bolt Group Eccentricity							
AISC 360-16 Chapter	$\phi R_n = 17.892 ~{ m kip}$ - Design Shear Capacity of a Bolt							
AISC 15th Ed. Page 7-6	The bolt coefficient C is derived using the instantaneous cer	nter of rol	ation method	. The coordi	nates of each k	oolt are liste	ed in the tab	le below.
to 7-8	Bolt No. 1 is located at the bottom-left corner of the bolt gro	oup.						
	Bolt N	0. X-CO	ordinate (in)	v-coordii	nate (in)			
	1		0.00	0.0	00			
	2		0.00	3.0	00			
	3		0.00	6.0	00			
	$y_{ic}=3~{ m in}$ - Location of I.C. along the Y-axis Using the AISC 15th Edition Equation (7-1), the correspondin	ng reactio	ns per bolt ar	e listed belo	ow.			
	Bolt No.	Ru (kip)	Rux (kip)	Ruy (kip)	Mn (kip-in)			
	1	17.56	11.91	12.91	77.69			
	2	17.07	0.00	17.07	55.49			
	3	17.56	-11.91	12.91	77.69			
	C=2.3966 - Calculated Bolt Group Coefficient							
	$C'=5.889~{ m in}$ - Calculated Bolt Group Coefficient for Mome	ent-only C	Case					
	Calculate the design shear capacity of the bolt group $\phi = 0.75$. Bolt Shear Posistance Factor)_						
	$\phi = 0.75$ - Bolt Shear Resistance Factor $d_b = 0.75 ext{ in }$ - Bolt Diameter							
	C=2.3966 - Calculated Bolt Group Coefficient							
	$F_{nv}=54~{ m ksi}$ - Bolt Nominal Shear Strength							
AISC 360-16 Chanter	$N_s=1$ - Number of Shear Planes							
AISC 360-16 Chapter J5.2(a)	$N_s=1$ - Number of Shear Planes h_f - Filler Factor for Bearing Bolts							

	$h_f = 0.85 < 1 - (0.4) imes ((0.25 ext{ in}) - (0.25 ext{ in})) \le 1$	
	$h_f=1$	
AISC 360-16 Chapter J3.6 Eq. (J3-1)	ϕR_n - Design Bolt Shear Capacity	
	$\phi R_n = \phi F_{nv} \; rac{\pi}{4} \left(d_b ight)^2 N_s \; C \; h_f$	
	$\phi R_n = \left(0.75 ight) imes \left(54 ext{ ksi} ight) imes rac{\pi}{4} imes \left(\left(0.75 ext{ in} ight) ight)^2 imes \left(1 ight) imes \left(2.3966 ight) imes \left(1 ight)$	
	$\phi R_n = 42.88~{ m kip}$	
	Result: Demand over Capacity Ratio $DCR = rac{V_u}{\phi R_n} = rac{(30 ext{ kip})}{(42.88 ext{ kip})} = 0.69963$	PASS
	Check No. 3: Ductility Check making sure Plate Strength does not exceed Bolt Group Strength	
	$n_r = 3$ - Number of Bolt Rows $n_c = 1$ - Number of Bolt Columns STD - Bolt Hole Type at Beam HSSL - Bolt Hole Type at Plate $L_{eh_pl} = 2$ in - Horizontal Edge Distance on Single Plate $2d_b = 1.5$ in - Twice Bolt Diameter	
AISC 15th Ed. page 10- 90	Check not applicable since $L_{eh_pl} \geq 2d_b.$	
	Check No. 4: Design Capacity of the Bolt Group in Bearing and Tear-out on Single Plate	
	Fig. Clear distances for bolt bearing check on plate.	
	Calculate the bolt bearing capacity of the single plate. $d_b=0.75~{ m in}$ - Bolt Diameter $t_p=0.5~{ m in}$ - Single Plate Thickness	

 $F_{up}=58~{
m ksi}$ - Single Plate Tensile Stress C=2.3966 - Calculated Bolt Group Coefficient $\phi=0.75$ - Bolt Bearing Resistance Factor AISC 360-16 Chapter J3.10 Eq. (J3-6a) $\phi R_{n_bearing}$ - Design Bolt Bearing Capacity of Section $\phi R_{n_bearing} = \phi \ 2.4 \, d_b \, t_p \, F_{up} \, C$ $\phi R_{n_bearing} = (0.75) imes 2.4 imes (0.75 ext{ in}) imes (0.5 ext{ in}) imes (58 ext{ ksi}) imes (2.3966)$ $\phi R_{n_bearing} = 93.825 \; \mathrm{kip}$ Calculate the clear distance of outer bolts on single plate. $L_{ev_pl} = 1.5 ~{
m in}$ - Vertical Edge Distance on Single Plate $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Plate l_{c1} - Clear Distance at First Bolt Row $l_{c1} = L_{ev_pl} - rac{d_h}{2}$ $l_{c1} = (1.5 ext{ in}) - rac{(0.8125 ext{ in})}{2}$ $l_{c1} = 1.0938$ in Calculate the clear distance of inner bolts on single plate. $s_r=3~{
m in}$ - Bolt Row Spacing $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Plate $l_{c2}\,$ - Clear Distance at Rest of Bolts $l_{c2} = s_r - d_h$ $l_{c2} = (3 ext{ in}) - (0.8125 ext{ in})$ $l_{c2} = 2.1875$ in Calculate the bolt tear-out capacity of the single plate. $l_{c1}=1.0938~{
m in}$ - Clear Distance at First Bolt Row $l_{c2}=2.1875~{
m in}$ - Clear Distance at Rest of Bolts $t_p=0.5~{
m in}$ - Single Plate Thickness $F_{up}=58~{
m ksi}$ - Single Plate Tensile Stress C=2.3966 - Calculated Bolt Group Coefficient $n_r=3$ - Number of Bolt Rows $\phi=0.75$ - Bolt Bearing Resistance Factor

Connection Design Report

AISC 360-16 Chapter J3.10 Eq. (J3-6c)	$\phi R_{n_tearout}$ - Design Bolt Tear-out Capacity of Section	
	$\phi R_{n_tearout} = \phi \left[1.2 \ l_{c1} \ t_p \ F_{up} + 1.2 \ l_{c2} \ t_p \ F_{up} \ (n_r - 1) ight] \left(rac{C}{n_r} ight)$	
	$\phi R_{n_tearout} = (0.75) imes [1.2 imes (1.0938 ext{ in}) imes (0.5 ext{ in}) imes (58 ext{ ksi}) + 1.2 imes (2.1875 ext{ in}) imes (0.5 ext{ in}) imes ((3) - 1)] imes \left(rac{(2.3966)}{(3)} ight)$	
	$\phi R_{n_tearout} = 114.02 \; { m kip}$	
	Determine the governing bearing and tear-out capacity of the bolt group on single plate.	
AISC 360-16 Chapter 13 10 Fg (13-6a)	$\phi R_{n_bearing} = 93.825 ~{ m kip}$ - Design bolt bearing capacity of single plate	
AISC 360-16 Chapter	$\phi R_{n,tearout} = 114.02 ext{ kip}$ - Design bolt tear-out capacity of single plate	
AISC 360-16 Chapter	ϕB_{rr} - Governing Design Capacity	
J3.10	gron coverning besign capacity	
	$\phi R_n = min\left(\phi R_{n_bearing}, \phi R_{n_tearout} ight)$	
	$\phi R_n = min ((93.825 \text{ kip}), (114.02 \text{ kip}))$	
	$\phi R_n = 93.825 ~{ m kip}$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = rac{V_u}{\phi R_n} = rac{(30 ext{ kip})}{(93.825 ext{ kip})} = 0.31974$	
	Check No. 5: Design Capacity of the Bolt Group in Bearing and Tear-out on Beam Web	
	Fig. Clear distances for bolt bearing check on member.	
	Calculate the bolt bearing capacity of the beam web.	
	$d_b=0.75~{ m in}$ - Bolt Diameter	
	$t_{wb}=0.25~{ m in}$ - Beam Web Thickness	

 $F_{ub}=65~{
m ksi}$ - Beam Tensile Stress C=2.3966 - Calculated Bolt Group Coefficient $\phi=0.75$ - Bolt Bearing Resistance Factor AISC 360-16 Chapter J3.10 Eq. (J3-6a) $\phi R_{n_bearing}$ - Design Bolt Bearing Capacity of Section $\phi R_{n_bearing} = \phi \ 2.4 \ d_b \ t_{wb} \ F_{ub} \ C$ $\phi R_{n_bearing} = (0.75) imes 2.4 imes (0.75 ext{ in}) imes (0.25 ext{ in}) imes (65 ext{ ksi}) imes (2.3966)$ $\phi R_{n_bearing} = 52.574 \; \mathrm{kip}$ Calculate the clear distance of outer bolts on beam web. $L_{ev_bm}=2.8188~{
m in}$ - Vertical Edge Distance on Top-Coped Beam Web $L_{ev_bm}=2.8188~{
m in}$ - Vertical Edge Distance on Bottom-Coped Beam Web $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Beam l_{c1} - Clear Distance at First Bolt Row $l_{c1} = L_{ev_bm} - rac{d_h}{2}$ $l_{c1} = (2.8188 ext{ in}) - rac{(0.8125 ext{ in})}{2}$ $l_{c1} = 2.4125 ext{ in}$ Calculate the clear distance of inner bolts on beam web. $s_r=3~{
m in}$ - Bolt Row Spacing $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Beam l_{c2} - Clear Distance at Rest of Bolts $l_{c2} = s_r - d_h$ $l_{c2} = (3 ext{ in}) - (0.8125 ext{ in})$ $l_{c2} = 2.1875 ext{ in }$ Calculate the bolt tear-out capacity of the beam web. $l_{c1}=2.4125~{
m in}$ - Clear Distance at First Bolt Row $l_{c2}=2.1875~{
m in}$ - Clear Distance at Rest of Bolts $t_{wb}=0.25~{
m in}$ - Beam Web Thickness $F_{ub}=65~{
m ksi}$ - Beam Tensile Stress C=2.3966 - Calculated Bolt Group Coefficient $n_r=3$ - Number of Bolt Rows

AISC 360-16 Chapter J3.10 Eq. (J3-6c)	$\phi=0.75$ - Bolt Bearing Resistance Factor $\phi R_{n_tearout}$ - Design Bolt Tear-out Capacity of Section	
	$\phi R_{n_tearout} = \phi \left[1.2 \ l_{c1} \ t_{wb} \ F_{ub} + 1.2 \ l_{c2} \ t_{wb} \ F_{ub} \ (n_r - 1) ight] \left(rac{C}{n_r} ight)$	
	$\phi R_{n_tearout} = (0.75) imes [1.2 imes (2.4125 ext{ in}) imes (0.25 ext{ in}) imes (65 ext{ ksi}) + 1.2 imes (2.1875 ext{ in}) imes (0.25 ext{ in}) imes ((3) - 1)] imes \left(rac{(2.3966)}{(3)} ight)$	
	$\phi R_{n_tearout} = 79.3~{ m kip}$	
	Determine the governing bearing and tear-out capacity of the bolt group on beam web.	
AISC 360-16 Chapter J3.10 Eq. (J3-6a)	$\phi R_{n_bearing} = 52.574~{ m kip}$ - Design bolt bearing capacity of beam web	
AISC 360-16 Chapter J3.10 Eq. (J3-6c)	$\phi R_{n_tearout} = 79.3~{ m kip}$ - Design bolt tear-out capacity of beam web	
AISC 360-16 Chapter J3.10	ϕR_n - Governing Design Capacity	
	$\phi R_n = min\left(\phi R_{n_bearing}, \phi R_{n_tearout} ight)$	
	$\phi R_n = min\left(\left(52.574~\mathrm{kip}\right), (79.3~\mathrm{kip})\right)$	
	$\phi R_n = 52.574~{ m kip}$	
	Result: Demand over Capacity Ratio $DCR = rac{V_u}{\phi R_n} = rac{(30 ext{ kip})}{(52.574 ext{ kip})} = 0.57062$	PASS
	Check No. 6: Design Capacity of Single Plate in Block Shear	
	$\overrightarrow{Fg. Single plate block shear pattern for shear load.}$	
	$t_p=0.5~{ m in}$ - Single Plate Thickness	

 $n_c=1$ - Number of Bolt Columns

 $s_c=0 {
m ~in}$ - Bolt Column Spacing

 $L_{eh_pl}=2~{
m in}$ - Horizontal Edge Distance on Single Plate

 $d_h=1~{
m in}$ - Horizontal Bolt Hole Dimension at Plate

 $A_{nt}\,$ - Net Area Subject to Tension (L-pattern)

$$A_{nt} = t_p \, \left[(n_c - 1) \, \, s_c + L_{eh_pl} - (n_c - 0.5) \, \left(d_h + 0.0625 \; {
m in}
ight)
ight]$$

$$A_{nt} = (0.5 ext{ in}) imes [((1)-1) imes (0 ext{ in}) + (2 ext{ in}) - ((1)-0.5) imes ((1 ext{ in}) + (0.0625 ext{ in}))]$$

$$A_{nt} = 0.73438 ext{ in}^2$$

Calculate the gross area of the single plate subject to shear.

 $t_p=0.5~{
m in}$ - Single Plate Thickness

 $L_{ev_pl} = 1.5 ~{
m in}$ - Vertical Edge Distance on Single Plate

 $n_r=3$ - Number of Bolt Rows

 $s_r=3~{
m in}$ - Bolt Row Spacing

 $A_{gv}\,$ - Gross Area Subject to Shear (L-pattern)

$$A_{gv}=t_p \,\left[L_{ev_pl}+(n_r-1)\,\,s_r
ight]$$

$$A_{qv} = (0.5 ext{ in}) imes [(1.5 ext{ in}) + ((3) - 1) imes (3 ext{ in})]$$

$$A_{gv}=3.75~{
m in}^2$$

Calculate the net area of the single plate subject to shear.

 $t_p=0.5~{
m in}$ - Single Plate Thickness

 $d_p=9~{
m in}$ - Single Plate Depth

 $L_{ev_pl} = 1.5 ~{
m in}$ - Vertical Edge Distance on Single Plate

 $n_r=3$ - Number of Bolt Rows

 $d_h=0.8125~{
m in}$ - Vertical Bolt Hole Dimension at Plate

 $A_{nv}\,$ - Net Area Subject to Shear (L-pattern)

$$A_{nv} = t_p \, \left[d_p - L_{ev_pl} - (n_r - 0.5) \, \left(d_h + 0.0625 \; {
m in}
ight)
ight]$$

 $A_{nv} = (0.5 ext{ in}) imes [(9 ext{ in}) - (1.5 ext{ in}) - ((3) - 0.5) imes ((0.8125 ext{ in}) + (0.0625 ext{ in}))]$

 $A_{nv}=2.6563~{\rm in}^2$

Calculate the design block shear capacity of the single plate.

 $F_{up}=58~{
m ksi}$ - Single Plate Tensile Stress

 $A_{nv}=2.6563~{
m in}^2$ - Net Area Subject to Shear (L-pattern)

 $U_{bs}=1$ - Uniformity factor for single line of bolts

Calculate the shear yielding capacity of the single plate.

 $\mathbf{\Gamma}$

	$F_{yp} = 30$ KSI - Single Plate Yield Stress
	$A_{qv} = 4.5~{ m in}^2$ - Section Gross Area
	$\phi=1$ - Shear Yielding Resistance Factor
AISC 360-16 Chapter	ϕR_n su - Design Shear Yielding Capacity of Section
J4.2 Eq. (J4-3)	
	$\phi R_{n_sy} = \phi \ 0.6 \ F_{yp} \ A_{gv}$
	$\phi R_{n_sy} = (1) imes 0.6 imes (36 ext{ ksi}) imes ig(4.5 ext{ in}^2ig)$
	$\phi R_{n_sy} = 97.2 ~{ m kip}$
	Calculate the net area of single plate subject to rupture. t = 0.5 in Single Plate Thickness
	$u_p = 0.5 \text{ III}$ - Single Plate Thickness
	$a_p = 3$ m - Single Flate Depth $n_1 = 3$ Number of Bolt Powe
	$d_r = 0.8125$ in . Vertical Bolt Hole Dimension at Plate
	A_{nn} - Section Net Area
	$A_{nv} = t_p \left[d_p - n_r \left(d_h + 0.0625 \; { m in} ight) ight]$
	$A = (0.7 \text{ in}) \times [(0.107 \text{ in}) + (0.0607 \text{ in})]$
	$A_{nv} = (0.5 \text{ m}) \times [(9 \text{ m}) - (3) \times ((0.8125 \text{ m}) + (0.0025 \text{ m}))]$
	$A_{nv}=3.1875~{\rm in}^2$
	Calculate the shear rupture capacity of the single plate.
	F = 58 kgi Single Plate Tensile Stress
	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress
	$F_{up}=58~{ m ksi}$ - Single Plate Tensile Stress $A_{nv}=3.1875~{ m in}^2$ - Section Net Area $\phi=1$ - Spear Yielding Resistance Factor
AISC 360-16 Chapter	$F_{up} = 58 ext{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 ext{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section $\phi R_{n_sr} = \phi 0.6 F_{up} A_{nv}$
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi} \cdot \text{Single Plate Tensile Stress}$ $A_{nv} = 3.1875 \text{ in}^2 \cdot \text{Section Net Area}$ $\phi = 1 \cdot \text{Shear Yielding Resistance Factor}$ $\phi R_{n_sr} - \text{Design Shear Rupture Capacity of Section}$ $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \ \text{ksi}) \times (3.1875 \ \text{in}^2)$ $\phi R_{n_sr} = 110.92 \ \text{kip}$
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section $\phi R_{n_sr} = \phi 0.6 F_{up} A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$ $\phi R_{n_sr} = 110.92 \text{ kip}$
AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi}$ - Single Plate Tensile Stress $A_{nv} = 3.1875 \text{ in}^2$ - Section Net Area $\phi = 1$ - Shear Yielding Resistance Factor ϕR_{n_sr} - Design Shear Rupture Capacity of Section $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$ $\phi R_{n_sr} = 110.92 \text{ kip}$ Determine the governing shear capacity of the single plate.
AISC 360-16 Chapter J4.2 Eq. (J4-4) AISC 360-16 Chapter J4.2 Eq. (J4-3)	$F_{up} = 58 \text{ ksi} \cdot \text{Single Plate Tensile Stress}$ $A_{nv} = 3.1875 \text{ in}^2 \cdot \text{Section Net Area}$ $\phi = 1 \cdot \text{Shear Yielding Resistance Factor}$ $\phi R_{n_sr} - \text{Design Shear Rupture Capacity of Section}$ $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$ $\phi R_{n_sr} = 110.92 \text{ kip}$ Determine the governing shear capacity of the single plate. $\phi R_{n_sy} = 97.2 \text{ kip - Design shear yielding capacity of single plate}$
AISC 360-16 Chapter J4.2 Eq. (J4-4) AISC 360-16 Chapter J4.2 Eq. (J4-3) AISC 360-16 Chapter I4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi} \cdot \text{Single Plate Tensile Stress}$ $A_{nv} = 3.1875 \text{ in}^2 \cdot \text{Section Net Area}$ $\phi = 1 \cdot \text{Shear Yielding Resistance Factor}$ $\phi R_{n_sr} - \text{Design Shear Rupture Capacity of Section}$ $\phi R_{n_sr} = \phi 0.6 F_{up} A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$ $\phi R_{n_sr} = 110.92 \text{ kip}$ Determine the governing shear capacity of the single plate. $\phi R_{n_sr} = 97.2 \text{ kip} \cdot \text{Design shear yielding capacity of single plate}$ $\phi R_{n_sr} = 110.92 \text{ kip} - \text{Design shear rupture capacity of single plate}$
AISC 360-16 Chapter J4.2 Eq. (J4-4) AISC 360-16 Chapter J4.2 Eq. (J4-3) AISC 360-16 Chapter J4.2 Eq. (J4-4) AISC 360-16 Chapter	$F_{up} = 58 \text{ ksi} \cdot \text{Single Plate Tensile Stress}$ $A_{nv} = 3.1875 \text{ in}^2 \cdot \text{Section Net Area}$ $\phi = 1 \cdot \text{Shear Yielding Resistance Factor}$ $\phi R_{n_sr} - \text{Design Shear Rupture Capacity of Section}$ $\phi R_{n_sr} = \phi \ 0.6 \ F_{up} \ A_{nv}$ $\phi R_{n_sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$ $\phi R_{n_sr} = 110.92 \text{ kip}$ Determine the governing shear capacity of the single plate. $\phi R_{n_sr} = 97.2 \text{ kip} \cdot \text{Design shear yielding capacity of single plate}$ $\phi R_{n_sr} = 110.92 \text{ kip} - \text{Design shear rupture capacity of single plate}$ $\phi R_{n_sr} = 110.92 \text{ kip} - \text{Design shear rupture capacity of single plate}$
AISC 360-16 Chapter J4.2 Eq. (J4-4) AISC 360-16 Chapter J4.2 Eq. (J4-3) AISC 360-16 Chapter J4.2 Eq. (J4-4) AISC 360-16 Chapter J4.2 Eq. (J4-4)	$F_{up} = 58 \text{ ksi} \cdot \text{Single Plate Tensile Stress}$ $A_{nv} = 3.1875 \text{ in}^2 \cdot \text{Section Net Area}$ $\phi = 1 \cdot \text{Shear Yielding Resistance Factor}$ $\phi R_{n,sr} - \text{Design Shear Rupture Capacity of Section}$ $\phi R_{n,sr} = \phi 0.6 F_{up} A_{nv}$ $\phi R_{n,sr} = (1) \times 0.6 \times (58 \text{ ksi}) \times (3.1875 \text{ in}^2)$ $\phi R_{n,sr} = 110.92 \text{ kip}$ Determine the governing shear capacity of the single plate. $\phi R_{n,sr} = 110.92 \text{ kip}$ Determine the governing shear vielding capacity of single plate $\phi R_{n,sr} = 110.92 \text{ kip} - \text{Design shear rupture capacity of single plate}$ $\phi R_{n,sr} = 110.92 \text{ kip} - \text{Design shear rupture capacity of single plate}$

Connection Design Report

	$F_{yp}=36~{ m ksi}$ - Single Plate Yield Stress	
	$E=29000~{ m ksi}$ - Modulus for Steel	
	$S=6.75~{ m in}^3$ - Elastic Section Modulus	
	$Z=10.125~{ m in}^3$ - Plastic Section Modulus	
AISC 360-16 Chapter	$\phi = 0.9$ - Flexure Resistance Factor	
F11.2 Eq. (F11-2)	ϕM_n - Design Flexural Capacity of Coped Section	
	$\phi M_n = \phi \left[C_b \left[1.52 - 0.274 \left(rac{L_b d}{t^2} ight) \left(rac{F_{yp}}{E} ight) ight] F_{yp} S \leq F_{yp} Z ight]$	
	$\phi M_n = (0.9) \times \left[(1.84) \times \left[1.52 - 0.274 \times ((90)) \times \left(\frac{(36 \text{ ksi})}{(29000 \text{ ksi})} \right) \right] \times (36 \text{ ksi}) \times (6.75 \text{ in}^3) \leq (36 \text{ ksi}) \times (10.125 \text{ in}^3) \right]$	
	$\phi M_n = 27.337 ~{ m kipft}$	
	Calculate the equivalent shear capacity of the single plate.	
AISC 360-16 Chapter	$\phi M_n = 27.337~{ m kipft}$ - Design Flexural Capacity of Coped Section	
111.2 LY. (111-2)	$L_b=2.5~{ m in}$ - Single Plate Unbraced Length	
	ϕV_n - Design Capacity of Single Plate in Bending	
	$\phi M_{ m m}$	
	$\phi V_n = rac{\varphi^{2A_n}}{L_b}$	
	$\phi V_{\rm r} = \frac{(27.337 \text{ kipft})}{}$	
	$\varphi \vee_n = (2.5 \text{ in})$	
	$\phi V_n = 131.22$ kip	
	Result:	PASS
	$DCD = V_u = \frac{(30 \text{ kip})}{0.00060}$	
	$DCR = \frac{1}{\phi V_n} = \frac{1}{(131.22 \text{ kip})} = 0.22802$	
	Check No. 9: Shear and Moment Interaction of Single Plate	
	Calculate the shear and moment interaction of the single plate. $V_{\rm res} = 20$ kip. Martinel Chear Load	
	$V_r = 50 \text{ klp}$ - vertical shear Load Moment at Component	
	$M_r = V_r \ L_b = (30 \ { m kip}) imes (2.5 \ { m in}) = 6.25 \ { m kipft}$	
AISC 360-16 Chapter 14 2 Fg (14-3)	$\phi V_n = 97.2~{ m kip}$ - Design shear yielding capacity of single plate	
AISC 360-16 Chapter	$\phi M_n = 27.337~{ m kipft}$ - Design Flexural Capacity of Single Plate	
AISC 15th Edition pg. (10-90) Fa (10-5)	I_{nt} - Interaction for Shear Yielding/Buckling and Flexure	

 $n_r=3$ - Number of Bolt Rows

 $s_r=3~{
m in}$ - Bolt Row Spacing

 $A_{gv}\,$ - Gross Area Subject to Shear (L-pattern)

$$A_{qv} = t_{wb} \left[L_{ev_bm} + (n_r - 1) \ s_r \right]$$

$$A_{gv} = (0.25 ext{ in}) imes [(2.8188 ext{ in}) + ((3) - 1) imes (3 ext{ in})]$$

 $A_{qv}=2.2047~{
m in}^2$

Calculate the net area of the beam web subject to shear.

 $t_{wb}=0.25~{
m in}$ - Beam Web Thickness

 $d_{coped} = 11.637~{
m in}$ - Depth of Web Remaining at Cope

 $L_{ev_bm}=2.8188~{
m in}$ - Vertical Edge Distance on Top-Coped Beam Web

 $L_{ev_bm}=2.8188~{
m in}$ - Vertical Edge Distance on Bottom-Coped Beam Web

 $n_r=3$ - Number of Bolt Rows

 $d_h = 0.8125 ~{
m in}$ - Horizontal Bolt Hole Dimension at Beam

 $A_{nv}\,$ - Net Area Subject to Shear (L-pattern)

$$A_{nv} = t_{wb} \, \left[d_{coped} - L_{ev_bm} - (n_r - 0.5) \, \left(d_h + 0.0625 \; {
m in}
ight)
ight]$$

 $A_{nv} = (0.25 ext{ in}) imes \left[(11.637 ext{ in}) - (2.8188 ext{ in}) - ((3) - 0.5) imes ((0.8125 ext{ in}) + (0.0625 ext{ in}))
ight]$

 $A_{nv}=1.6578~{\rm in}^2$

Calculate the design block shear capacity of the coped beam web.

 $F_{ub}=65~{
m ksi}$ - Beam Tensile Stress

 $A_{nv}=1.6578~{
m in}^2$ - Net Area Subject to Shear (L-pattern)

 $U_{bs}=1$ - Uniformity factor for single line of bolts

 $A_{nt}=0.39063~{
m in}^2$ - Net Area Subject to Tension (L-pattern)

 $F_{yb}=50~{
m ksi}$ - Beam Yield Stress

 $A_{gv}=2.2047~{
m in}^2$ - Gross Area Subject to Shear (L-pattern)

 $\phi=0.75$ - Block Shear Resistance Factor

AISC 360-16 Chapter J4.3 Eq. (J4-5) ϕR_n - Design Block Shear Capacity of Section

$$\phi R_n = \phi \; (0.6 \; F_{ub} \; A_{nv} + U_{bs} \; F_{ub} \; A_{nt} \leq 0.6 \; F_{yb} \; A_{gv} + U_{bs} \; F_{ub} \; A_{nt})$$

 $\phi R_n = (0.75) \times \left(0.6 \times (65 \text{ ksi}) \times \left(1.6578 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(0.39063 \text{ in}^2\right) \le 0.6 \times (50 \text{ ksi}) \times \left(2.2047 \text{ in}^2\right) + (1) \times (65 \text{ ksi}) \times \left(0.39063 \text{ in}^2\right)\right)$

Result:

	$\lambda_p = 0.413 \wedge \sqrt{(50 \text{ ksi})}$	
	$\lambda_p=34.976$	
	Since, $\lambda_n < \lambda$ and $\lambda \leq 2\lambda_n$.	
AISC 15th Edition pg. (9- 7) Eq. (9-7)	ϕM_n - Design Flexural Capacity of Coped Section	
,,		
	$\phi M_n = \phi \left[F_{yb} Z_x - (F_{yb} Z_x - F_{yb} S_x) \left(rac{\lambda}{\lambda_p} - 1 ight) ight]$	
	$\phi M_n = (0.9) \times \left\lfloor (50 \text{ ksi}) \times \left(18.464 \text{ in}^3\right) - \left((50 \text{ ksi}) \times \left(18.464 \text{ in}^3\right) - (50 \text{ ksi}) \times \left(10.089 \text{ in}^3\right)\right) \times \left(\frac{(50.8)}{(34.976)} - 1\right) \right\rfloor$	
	$\phi M_n = 55.031 { m ~kipft}$	
	Calculate the equivalent shear capacity of the coped beam.	
AISC 15th Edition pg. (9- 7) Eq. (9-7)	$\phi M_n = 55.031 { m ~kipft}$ - Design Flexural Capacity of Coped Section	
	$e_c = 3.375$ in - Cope Eccentricity	
	φv_n - Design Capacity of Coped Beam in Bending	
	$\phi V_n = rac{\phi M_n}{e_c}$	
	$\phi V_n = rac{(55.031 ext{ kipft})}{(3.375 ext{ in})}$	
	$\phi V_n = 195.66~{ m kip}$	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = rac{v_r}{\phi V_n} = rac{(60 ext{ Mp})}{(195.66 ext{ kip})} = 0.15332$	
	Check No. 13: Connection Detailing Limitations at Support Side	
	Detailing Limitations Limit Value (in) Actual Value (in) DCR Result	
	Maximum Fillet Weld Size per Beam Clearance0.5000.3130.625PASS	
	Result:	PASS
	Demand over Capacity Ratio	
	$DCR = \frac{1}{c} = \frac{1}{(0.5)} = 0.625$	
	Check No. 14: Required Weld to Develop Single Plate at Support Web	
	W = $0.3125~{ m in}$ - Fillet Weld Size	

Connection Design Report

AISC 15th Edition page 10-87	W_{duc} - Weld required to develop Plate	
	$W_{duc}=rac{5}{8} \ t_p$	
	$W_{duc}=rac{5}{8} imes (0.5 ext{ in})$	
	$W_{duc}=0.3125~{ m in}$	
	Result: Demand over Capacity Ratio $DCR = rac{W_{duc}}{W} = rac{(0.3125 ext{ in})}{(0.3125 ext{ in})} = 1$	PASS
	Check No. 15: Design Capacity of Weld to Support Web	
	Fig. Fillet weld lines at the support.	
AISC 15th Ed. Part 9 Eq.	Calculate the maximum fillet weld size in 16th of an inch for base metal check. $t_p = 0.5$ in - Single Plate Thickness $F_{up} = 58$ ksi - Single Plate Tensile Stress $t_{ws} = 0.3$ in - Girder Web Thickness $F_{us} = 65$ ksi - Girder Tensile Stress D_{max} - Maximum Fillet Weld Size for Base Metal Strength	
(9-2)	$D_{max}=rac{rac{t_p}{2}\ F_{up}\leq t_{ws}\ F_{us}}{3.09\ \mathrm{kip/in}}$	
	$D_{max} = rac{(0.25~{ m in}) imes (58~{ m ksi}) \le (0.3~{ m in}) imes (65~{ m ksi})}{(3.09~{ m kip/in})}$	
	$D_{max}=4.6926$	

REFERENCES	CALCULATIONS					RESULTS
	Summary of Check	S				
	Design Checks	Demand	Capacity	DCR	Result	
	Connection Detailing Limitations at Beam Side	2.688	3.000	0.896	PASS	
	Design Capacity of the Bolt Group in Shear	30.000	42.880	0.700	PASS	
	Design Capacity of the Bolt Group in Bearing and Tear-out on Single Plate	30.000	93.825	0.320	PASS	
	Design Capacity of the Bolt Group in Bearing and Tear-out on Beam Web	30.000	52.574	0.571	PASS	
	Design Capacity of Single Plate in Block Shear	30.000	92.695	0.324	PASS	
	Design Capacity of Single Plate in Shear	30.000	97.200	0.309	PASS	
	Design Capacity of Single Plate in Flexure Using Double Coped Procedure	30.000	131.220	0.229	PASS	
	Shear and Moment Interaction of Single Plate	0.148	1.000	0.148	PASS	
	Design Capacity of Coped Beam in Block Shear	30.000	67.534	0.444	PASS	
	Design Capacity of Coped Beam in Shear	30.000	95.250	0.315	PASS	
	Design Capacity of Coped Beam in Flexure	30.000	195.665	0.153	PASS	
	Connection Detailing Limitations at Support Side	0.313	0.500	0.625	PASS	
	Required Weld to Develop Single Plate at Support Web	0.313	0.313	1.000	PASS	
	Design Capacity of Weld to Support Web	30.000	109.421	0.274	PASS	

