Example 1
Determine the stresses of a T-section subjected to combined forces.
Comparison of Results
Result | Location | SkyCiv SB Analysis | Manual | Third-Party |
Primary Stresses (MPa) | ||||
Axial | max | 2.794 | \(\frac{Area}{Axial}=\frac{10·1000}{3579} = 2.794\) (0.00%) | 2.794 (0.00%) |
min | 2.794 | \(\frac{Area}{Axial}=\frac{10·1000}{3579} = 2.794\) (0.00%) | 2.794 (0.00%) | |
Bending Y | max | 14.234 | \(\frac{Bending Y}{I_y/y_{max}}=\frac{1·1000000}{6.32306·10^6/90} =14.234\) (0.00%) | 14.234 (0.00%) |
min | -14.234 | \(\frac{Bending Y}{I_y/y_{min}}=\frac{1·1000000}{6.32306·10^6/-90} =-14.234\) (0.00%) | -14.234 (0.00%) | |
Bending Z | max | 3.723 | \(\frac{Bending Z}{I_z/z_{max}}=\frac{1·1000000}{1.05786·10^7/39.3877} =3.723\) (0.00%) | 3.723 (0.00%) |
min | -14.237 | \(\frac{Bending Z}{I_z/z_{min}}=\frac{1·1000000}{1.05786·10^7/-150.6123} =-14.237\) (0.00%) | -14.237 (0.00%) | |
Resultant Shear Y | max | 1.123 | \(\frac{Shear Y·Q_z}{I_z·t}=\frac{1·1000·7.93943·10^4}{1.05786·10^7·7} = 1.072\) (4.54%) | 1.120 (0.26%) |
Resultant Shear Z | max | 0.698 | \(\frac{Shear Z·Q_y}{I_y·t}=\frac{1·1000·5.25658·10^4}{6.32306·10^6·13} = 0.639\) (8.45%) | 0.709 (1.57%) |
Torsion | max | 9.956 | \(\frac{Torsion·r_{max}}{J}=\frac{0.1·1000000·13.5357}{1.46870·10^5} = 9.216\) (7.43%) | 9.570 (3.87%) |
Example 2
Determine the stresses of a L-section subjected to combined forces.
Comparison of Results
Result | Location | SkyCiv SB Analysis | Manual | Third-Party |
Primary Stresses (MPa) | ||||
Axial | max | 5.879 | \(\frac{Area}{Axial}=\frac{10·1000}{1701.00} = 5.879\)
(0.00%) |
5.879
(0.00%) |
min | 5.879 | \(\frac{Area}{Axial}=\frac{10·1000}{1701.00} = 5.879\)
(0.00%) |
5.879
(0.00%) |
|
Bending Y | max | 65.112 | \(\frac{Bending Y·\cos(\alpha)}{I_yp/z_{max}}-\frac{Bending Y·\sin(\alpha)}{I_zp/y_{max}}=\frac{1·1000000·\cos(24.2186^\circ)}{8.31922·10^6/-68.7955}-\frac{1·1000000·\sin(24.2186^\circ)}{4.67198·10^6/53.8855}=65.112\)
(0.00%) |
65.112
(0.00%) |
min | -41.053 | \(\frac{Bending Y·\cos(\alpha)}{I_yp/z_{min}}-\frac{Bending Y·\sin(\alpha)}{I_zp/y_{min}}=\frac{1·1000000·\cos(24.2186^\circ)}{8.31922·10^6/-40.1846}-\frac{1·1000000·\sin(24.2186^\circ)}{4.67198·10^6/-34.1575}=-41.053\)
(0.00%) |
-41.053
(0.00%) |
|
Bending Z | max | 33.15 | \(\frac{Bending Z·\cos(\alpha)}{I_zp/y_{max}}+\frac{Bending Z·\sin(\alpha)}{I_yp/z_{max}}=\frac{1·1000000·\cos(24.2186^\circ)}{4.67198·10^6/99.7689}+\frac{1·1000000·\sin(24.2186^\circ)}{8.31922·10^5/27.7320}=33.15\)
(0.00%) |
33.15 (0.00%) |
min | -26.483 | \(\frac{Bending Z·\cos(\alpha)}{I_zp/y_{min}}+\frac{Bending Z·\sin(\alpha)}{I_yp/z_{min}}=\frac{1·1000000·\cos(24.2186^\circ)}{4.67198·10^6/-34.1575}+\frac{1·1000000·\sin(24.2186^\circ)}{8.31922·10^5/-40.1846}=-26.483\)
(0.00%) |
-26.483 (0.00%) | |
Resultant Shear Y | max | 1.123 | \(\frac{Shear Y·Q_z}{I_z·t}=\frac{1·1000·7.93943·10^4}{1.05786·10^7·7} = 1.072\)
(4.54%) |
1.120 (0.26%) |
Resultant Shear Z | max | 0.698 | \(\frac{Shear Z·Q_y}{I_y·t}=\frac{1·1000·5.25658·10^4}{6.32306·10^6·13} = 0.639\)
(8.45%) |
0.709 (1.57%) |
Torsion | max | 9.956 | \(\frac{Torsion·r_{max}}{J}=\frac{0.1·1000000·13.5357}{1.46870·10^5} = 9.216\)
(7.43%) |
9.570 (3.87% |
Example 3
Determine the stresses of a section subjected to combined forces.
Comparison of Results
Result | Location | SkyCiv SB Analysis | Manual | Third-Party |
Primary Stresses (MPa) | ||||
Axial | max | 18.729 | \(\frac{Area}{Axial}=\frac{10·1000}{533.9368} = 18.729\) (0.00%) | 18.793 (0.00%) |
min | 18.729 | \(\frac{Area}{Axial}=\frac{10·1000}{533.9368} = 18.729\) (0.00%) | 18.793(0.00%) | |
Bending Y | max | 14.234 | \(\frac{Bending Y·\cos(\alpha)}{I_yp/z_{max}}+\frac{Bending Z·\sin(\alpha)}{I_zp/y_{max}}=\frac{1·1000000·\cos(24.2186^\circ)}{8.31922·10^5/-15.7027}+\frac{1·1000000·\sin(24.2186^\circ)}{4.67198·10^6/37.3265}=\) (0.00%) | 14.234 (0.00%) |
min | -14.234 | \(\frac{Bending Y}{I_y/y_{min}}=\frac{1·1000000}{6.32306·10^6/-90} =-14.234\) (0.00%) | -14.234 (0.00%) | |
Bending Z | max | 3.723 | \(\frac{Bending Z}{I_z/z_{max}}=\frac{1·1000000}{1.05786·10^7/39.3877} =3.723\) (0.00%) | 3.723 (0.00%) |
min | -14.237 | \(\frac{Bending Z}{I_z/z_{min}}=\frac{1·1000000}{1.05786·10^7/-150.6123} =-14.237\) (0.00%) | -14.237 (0.00%) | |
Resultant Shear Y | max | 1.123 | \(\frac{Shear Y·Q_z}{I_z·t}=\frac{1·1000·7.93943·10^4}{1.05786·10^7·7} = 1.072\) (4.54%) | 1.120 (0.26%) |
Resultant Shear Z | max | 0.698 | \(\frac{Shear Z·Q_y}{I_y·t}=\frac{1·1000·5.25658·10^4}{6.32306·10^6·13} = 0.639\) (8.45%) | 0.709 (1.57%) |
Torsion | max | 9.956 | \(\frac{Torsion·r_{max}}{J}=\frac{0.1·1000000·13.5357}{1.46870·10^5} = 9.216\) (7.43%) | 9.570 (3.87%) |