REFERENCES	CALCULATIONS	RESULTS
	MEMBER #1 DESIGN REPORT	
Code: AISC 360-16 LRFD		
	Project details	
	Project Name: Project ID:	
	Company: Designer: Client:	
	Project Notes: Project Units: imperial	
	General member design information	
	Section Name: W8x58 Shape: I-Beam (Rolled)	
	$\begin{vmatrix} b_t \\ \end{vmatrix} $	
	$r \rightarrow r$	
	dz	
	t_{w} t_{b}	
	b _b	
	Dimensions: Height $d=8.750~\mathrm{in}$	
	Web Thick $t_w=0.510~{ m in}$ Top Flange Width $b_t=8.220~{ m in}$ Top Flange Thick $t_t=0.810~{ m in}$	
	Bottom Flange Width $b_b=8.220~{ m in}$ Bottom Flange Thick $t_b=0.810~{ m in}$ Fillet $r=0.390~{ m in}$	
	Properties: Area $A=17.100~{ m in}^2$	
	Moment of Inertia about the z-axis $I_z=228.000~ m in^4$ Moment of Inertia about the y-axis $I_y=75.100~ m in^4$	
	Plastic Section Modulus about the z-axis $Z_z=59.3478~ m in^3$ Plastic Section Modulus about the y-axis $Z_y=27.829~ m in^3$ Torsion Contant $J=3.330~ m in^4$	
	Warping Contant $I_w = 1168.250~\mathrm{in}^6$	
	Material properties: Material Name: Structural Steel Modulus of Elasticity $E=29000~ m ksi$	
	Yield Strength $F_y=38~ m ksi$ Ultimate Tensile Strength $F_u=60~ m ksi$	
	Design parameters: Member length $L=10.000~{ m ft}$	
	Length between braced points $L_b=10.000~{ m ft}$ Effective Length factor for flexural buckling about y-axis $K_y=2.100$ Effective Length factor for flexural buckling about z-axis $K_z=2.100$	
	Axial Force $P=5.000~{ m kip}$	
	Major Banding Moment $M_z=86.243~ m kip-ft$ Minor Banding Moment $M_y=0.000~ m kip-ft$ Shear Force $V_z=0.000~ m kip$ Shear Force $V_y=15.582~ m kip$	
	CHECK AXIAL STRENGTH (axial compression member)	
	Check slenderness ratio of axial compression member (AISC E2) Slenderness ratio z-axis	
	$\lambda_z = rac{K_z L}{r_z} = rac{21.000}{0.304} = 69.013$	
	Slenderness ratio y-axis	
	$\lambda_y = rac{K_y L}{r_y} = rac{21.000}{0.175} = 120.249$	

Maximum slenderness ratio

$$\lambda = \max(\lambda_y, \lambda_z) = \max(69.013, 120.249) = 120.249$$

 $\lambda = 120.249 < 200$

STATUS OK!

Check width-thickness ratio of flange (B4. Table B4.1a)

$$\lambda_f = rac{0.5 \cdot b_t}{t_t} = rac{0.5 \cdot 8.220}{0.810} = 5.074$$

$$\lambda_{rf} = 0.56 \sqrt{rac{E_s}{F_y}} = 0.56 \sqrt{rac{29000}{38}} = 15.470$$

$$\lambda_f = 5.074 < \lambda_{rf} = 15.470
ightarrow ext{ non-slender section}$$

$$\lambda_w = \frac{d - tt - tb - 2r}{t_w} = \frac{8.750 - 0.810 - 0.810 - 2 \cdot 0.390}{0.510} = 12.451$$

$$\lambda_{rw} = 1.49 \sqrt{rac{E_s}{F_y}} = 1.49 \sqrt{rac{29000}{38}} = 41.162$$

$$\lambda_w = 12.451 < \lambda_{rw} = 41.162
ightarrow ext{ non-slender section}$$

Calculate Flexural Buckling Stress

Calculate the elastic critical buckling stress F_e .

$$F_e = rac{\pi^2 E}{\lambda^2} = rac{\pi^2 \cdot 29000}{120.248^2} = 19.794 ext{ ksi}$$

Calculate the flexural buckling stress $F_{\it cr}$.

$$4.71\sqrt{rac{E}{F_y}}\,=4.71\sqrt{rac{29000}{38}}=130.115$$

Because:

$$\lambda = 120.248 < 130.115$$

$$F_{cr} = [0.658^{rac{F_y}{F_e}}]F_y = [0.658^{rac{38}{19.794}}] \cdot 38 = 17.015 ext{ ksi}$$

Nominal Compressive Strength P_n .

$$P_n = F_{cr} A_g = 17.015 \cdot 17.100 = 290.951 ext{ kip}$$

Calculate axial compressive strength.

Resistance factor for compression: $\phi_c=0.900$

$$\phi_c P_n = 0.900 \cdot 290.951 = 261.856 ~
m kip$$

Calculate the flexural buckling stress F_{cr} .

$$4.71\sqrt{rac{E}{F_y}}\,=4.71\sqrt{rac{29000}{38}}=130.115$$

Because:

$$\lambda = 120.248 < 130.115$$

$$F_{cr} = [0.658^{rac{F_y}{F_e}}]F_y = [0.658^{rac{38}{19.794}}] \cdot 38 = 17.015 ext{ ksi}$$

Check ratio of axial strength $\frac{P}{\phi_c P_n}$

CHECK FLEXURAL STRENGTH ABOUT MAJOR AXIS

Calculate limiting width-thickness ratio of flange for flexure (AISC B4.Table B4.1b)

$$\lambda_f = \frac{0.5 \cdot b_t}{t_t} = \frac{0.5 \cdot 8.220}{0.810} = 5.074$$

$$\lambda_{pf} = 0.38 \sqrt{rac{E}{F_y}} = 0.38 \sqrt{rac{29000}{38}} = 10.498$$

$$\lambda_{rf} = 1.00 \sqrt{rac{E}{F_y}} = 1.00 \sqrt{rac{29000}{38}} = 27.625$$

$$\lambda_f = 5.074 < \lambda_{pf} = 10.498
ightarrow extbf{COMPACT}$$

Calculate limiting width-thickness ratio of web for flexure

$$\lambda_w = rac{d-tt-tb-2r}{t_w} = rac{8.750-0.810-0.810-2\cdot0.390}{0.510} = 12.451$$

$$\lambda_{pw} = 3.76 \sqrt{rac{E}{F_y}} = 3.76 \sqrt{rac{29000}{38}} = 103.871$$

$$\lambda_{rw} = 5.70 \sqrt{rac{E}{F_y}} = 5.70 \sqrt{rac{29000}{38}} = 157.464$$

$$\lambda_w = 12.451 < \lambda_{pw} = 103.871
ightarrow extbf{COMPACT}$$

Calculate lateral-torsional buckling modification factor

$$C_b = 2.230$$

Yielding

Calculate nominal flexural strength for Yielding (AISC F2.1 (F2-1))

$$M_{n1} = M_p = F_y Z_x = 38.000 \cdot 59.348 = 187.18300141350002 ext{ k-ft}$$

Lateral-Torsional Buckling

Compute limiting laterally unbraced length for the limit state of yielding F2.2 (F2-5)

$$L_p = 1.76 r_y \sqrt{rac{E}{F_y}} = 1.76 \cdot 2.096 \cdot \sqrt{rac{29000}{38}} = 101.892 ext{ in}$$

Laterally unbraced length for the limit state of inelastic lateral-torsional buckling F2.2 (F2-6) For doubly symmetric I-shapes F2-8a

$$c = 1.00$$

Distance between the flange centroid

$$h_0 = d - 0.5(tt + tb) = 8.750 - 0.5(0.810 + 0.810) = 7.940$$
in

$$r_{ts} = \sqrt[4]{rac{I_y C_w}{S_z^2}} = \sqrt[4]{rac{75.100 \cdot 1168.250}{52.114^2}} = 2.384 ext{ in}$$

$$L_r = 1.95 r_{ts} \, rac{E}{0.7 F_y} \, \sqrt{rac{Jc}{S_z h_0} + \sqrt{\left(rac{Jc}{S_z h_0}
ight)^2 + 6.76 {\left(rac{0.7 F_y}{E}
ight)^2}}}$$

$$L_r = 1.95 \cdot 2.384 \cdot \frac{29000.000}{0.7 \cdot 38.000} \sqrt{\frac{3.330 \cdot 1.000}{52.114 \cdot 7.940} + \sqrt{\left(\frac{3.330 \cdot 1.000}{52.114 \cdot 7.940}\right)^2 + 6.76\left(\frac{0.7 \cdot 38.000}{29000.000}\right)^2}}$$

$$= 649.879 \text{ in}$$

Calculate nominal flexural strength for Lateral-torsional buckling F2.2 (F2-2) Because:

$$L_b = 120.000 > L_p = 101.892 \ {
m and} \ L_b = 120.000 {<} L_r = 649.879$$

then

$$M_{n2} = C_b \left[M_p - (M_p - 0.7 F_y S_z) \left(rac{L_b - L_p}{L_r - L_p}
ight)
ight]$$

$$M_{n2} = 2.230 \left[2255.217 - (2255.217 - 0.7 \cdot 38.000 \cdot 52.114) \left(rac{120.000 - 101.892}{649.879 - 101.892}
ight)
ight] = 413.757 ext{ k-ft}$$

Nominal flexural strength about major axis M_{nz} .

$$M_{nz} = \min(M_{n1}, M_{n2}) = \min(187.934, 413.757) = 187.934 ext{ k-ft}$$

Calculate flexural strength about major axis

Resistance factor for flexure: $\phi_b = 0.900$

$$\phi_b M_{nz} = 0.900 \cdot 187.934 = 169.141 \text{ k-ft}$$

Check ratio of shear strength $\frac{M_z}{\phi_b \mathrm{M}_{nz}}$

$$\frac{\mathrm{M}_z}{\phi_b\,\mathrm{M}_{nz}} = \frac{86.243}{169.141} = 0.510 < 1.0$$

STATUS OK!

CHECK FLEXURAL STRENGTH ABOUT MINOR AXIS

Calculate limiting width-thickness ratio of flange for flexure (AISC B4.Table B4.1b)

$$\lambda_f = rac{0.5 \cdot b_t}{t_t} = rac{0.5 \cdot 8.220}{0.810} = 5.074$$

$$\lambda_{pf} = 0.38 \sqrt{rac{E}{F_y}} = 0.38 \sqrt{rac{29000}{38}} = 10.498$$

$$\lambda_{rf} = 1.00 \sqrt{rac{E}{F_y}} \, = 1.00 \sqrt{rac{29000}{38}} = 27.625$$

$$\lambda_f = 5.074 < \lambda_{pf} = 10.498
ightarrow extbf{COMPACT}$$

Calculate limiting width-thickness ratio of web for flexure

$$\lambda_w = rac{d-tt-tb-2r}{t_w} = rac{8.750-0.810-0.810-2\cdot0.390}{0.510} = 12.451$$

$$\lambda_{pw} = 3.76 \sqrt{rac{E}{F_y}} = 3.76 \sqrt{rac{29000}{38}} = 103.871$$

$$\lambda_{rw} = 5.70 \sqrt{rac{E}{F_y}} = 5.70 \sqrt{rac{29000}{38}} = 157.464$$

$$\lambda_w = 12.451 < \lambda_{pw} = 103.871
ightarrow extbf{COMPACT}$$

Yielding

Calculate nominal flexural strength for Yielding (AISC F6.1 (F6-1))

	$M_{n1} = M_p = F_y Z_y \leq 1.6 F_y S_y = \min(38.000 \cdot 27.829 = 88.124; 1.6 \cdot 38.000 \cdot 18.273 = 92.580) \ = 88.124 ext{ k-ft}$	
	Nominal flexural strength about minor axis M_{ny} .	
	$M_{ny} = M_{n1} = 88.124 \ \mathrm{k ext{-}ft}$	
	Calculate flexural strength about minor axis	
	Resistance factor for flexure: $\phi_b=0.900$	
	$\phi_b M_{ny} = 0.900 \cdot 88.124 = 79.312 ext{ k-ft}$	
	Check ratio of shear strength $rac{M_y}{\phi_b \mathrm{M}_{ny}}$	
	$rac{ ext{M}_y}{\phi_b ext{M}_{ny}} = rac{0.000}{79.312} = 0.000 < 1.0$	STATUS OK!
	CHECK SHEAR STRENGTH Y-AXIS	
	Nominal shear strength y-axis V_{ny} . $V_{ny}=0.6F_yA_wC_v=0.6\cdot38.000\cdot4.463\cdot1.000=101.745~\mathrm{kip}$	
	Calculate shear strength y-axis ${\rm Resistance~factor~for~shear:}~\phi_v=1.000$	
	$\phi_b V_{ny} = 1.000 \cdot 101.745 = 101.745 ext{ k-ft}$	
	Check ratio of shear strength $rac{V_y}{\phi_v V_{ny}}$	
	$rac{V_y}{\phi_v V_{ny}} = rac{15.582}{101.745} = 0.153 < 1.0$	
	φ_{v} v $_{ny}$ 101.140	STATUS OK!
	CHECK SHEAR STRENGTH Z-AXIS	
	Calculate the web plate buckling coefficient (AISC G2.1). $ {\rm for \ singly \ and \ doubly \ symmetric \ shapes \ loaded \ in \ the \ weak \ axis:} \ k_v=1.2 $	
	Calculate the web shear coefficient (AISC G2.1)	
	Because: $\frac{h}{t_w} = \frac{8.220}{1.620} = 5.074 \le 1.10 \sqrt{\frac{k_v E}{F_y}} = 1.10 \cdot \sqrt{\frac{1.200 \cdot 29000}{38}} = 33.288$	
	web shear coefficient $C_v=1.000$	
	Nominal shear strength z-axis V_{nz} . $V_{ny}=0.6F_yA_wC_v=0.6\cdot38.000\cdot13.316\cdot1.000=303.614~{ m kip}$	
	Calculate shear strength z-axis ${\rm Resistance~factor~for~shear:}~\phi_v=0.900$	
	$\phi_v V_{nz} = 0.900 \cdot 303.614 = 273.253 ext{ k-ft}$	
	Chack ratio of chaar strongth V_z	
	Check ratio of shear strength $rac{V_z}{\phi_v V_{nz}}$ $V_z = 0.000$	
	$rac{V_z}{\phi_v V_{nz}} = rac{0.000}{273.253} = 0.000 < 1.0$	STATUS OK!
Member 1 Design	Report	ClarCiv

CHECK INTERACTION OF COMBINED STRENGTH

Because Pr/Pc<0.2:

$$rac{P_r}{2P_c} + \left(rac{M_{rx}}{M_{cx}} + rac{M_{ry}}{M_{cy}}
ight) = rac{5.000}{2 \cdot 261.856} + \left(rac{86.243}{169.141} + rac{0.000}{79.312}
ight) = 0.519 < 1.0$$

STATUS OK!

